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1 Free/Undamped Oscillation
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Figure 1: A spring-mass mechanical system

The equilibrium state of the system shown in Figure 1 can be mathematically described by
Hooke’s law:

F = ma = −kx (1)

Re-arrange Equation 1, we could get

ma + kx = 0 (2)

The acceleration, a, is the second-derivative of the displacement, x, with respect to the time,

t: a =
d2x
dt2 . So Equation 2 can be converted to a 2nd-order ordinary differential equation:

m
d2x
dt2 + kx = 0 (3)

Equation 3 is commonly referred to as the governing equation that describes the dynamic
behaviours of the mechanical system shown in Figure 1. This equation is now ready to be
solved!

Solution Procedure

The coefficient of the 2nd-order derivative term becomes 1 if we divide the mass m in
Equation 3,

d2x
dt2 +

k
m

x = 0 (4)

Applying the trial solution x = A cos(ωt + ϕ) to Equation 4a:

−Aω2 cos(ωt + ϕ)︸ ︷︷ ︸
ẍ=d2x/dt2

+
k
m

A cos(ωt + ϕ)︸ ︷︷ ︸
x

= 0 (5)

1

mailto:binghuan.li19@imperial.ac.uk


Re-arrange , we could separate a common, non-zero term cos(ωt + ϕ):

(−ω2 +
k
m
) A · cos(ωt + ϕ)︸ ︷︷ ︸

this term cannot be zero!

= 0 (6)

Equation 6 implies that only the first term (−ω2 +
k
m
) is zero (since the cosine term

can never be zero!). Therefore, we can express ω in terms of k and m:

−ω2 +
k
m

= 0 → ω = ±
√

k
m

(7)

We are only interested in the positive solution of ω! Therefore, the solution for Equation 3
is

x = A cos(

√
k
m

t + ϕ) (8)

aWell... for now you just need to accept that this solution is correct!

Equation 8 is the general solution for a undamped system. Let us visualise this by plotting
the displacement as a function of time (x-t):
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As you can see, there is no decay of the displacement as time goes by, i.e., the amplitude
of the displacement is constant due to the absence of the damping effects. The mass in the
spring-mass system will move back and forth with perfect conservation of energy!

Electrical analogy The electrical equivalent circuit that can generate the free oscillation is
a capacitance (C) -inductance (L) circuit.
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C

LVtotal

The voltage across

• the inductor, L: VL = L
dI
dt

• the capacitor, C: VC =
1
C

∫ t

0
I(τ)dτ

By Kirchhoff’s voltage law:

VL + VC = Vtotal → L
dI
dt

+
1
C

∫ t

0
I(τ)dτ = Vtotal

Differentiate:

L
d2 I
dt2 +

1
C

I = 0

which is the governing equation for the above L-C system.
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2 Damped Oscillation
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Figure 2: A spring-mass-damper mechanical system

Figure 2 shows a spring-mass-damper (k-m-c) system. The equilibrium state of the system
can be mathematically described by:

F = ma = −cv − kx (9)

where c is known as the damping coefficient, v is the moving speed of the mass, and c · v is
defined as the force exerted by the mechanical damper. Re-arrange Equation 9, we could get

ma + cv + kx = 0 (10)

The velocity, v and the acceleration, a are defined as the 1st and 2nd derivative of the dis-

placement, x, with respect to the time, t: v =
dx
dt

, a =
d2x
dt2 . Therefore, Equation 10 can be

converted to a 2nd-order ordinary differential equation (again!)

m
d2x
dt2 + c

dx
dt

+ kx = 0 (11)

Solution Procedure

The coefficient of the 2nd-order derivative term becomes 1 if we divide the mass m in
Equation 11,

d2x
dt2 +

c
m

dx
dt

+
k
m

x = 0 (12)

Let us first define two parameters: natural frequency and damping factor:

• Natural frequency, ωn =

√
k
m

• Damping factor, γ =
c

2
√

km

If we apply the natural frequency and damping factor defined above to Equation 12,
we will obtain a more generic expression of the governing equation:

d2x
dt2 + 2γωn

dx
dt

+ ω2
nx = 0 (13)

To solve Equation 13, we shall apply the trial solution x = Aeµt to Equation 13a.

µ2Aeµt︸ ︷︷ ︸
ẍ

+ 2γωn µAeµt︸ ︷︷ ︸
ẋ

+ ω2
n Aeµt︸︷︷︸

x

= 0 (14)
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Re-arrange , we could separate a common, non-zero term Aeµt:

(µ2 + 2γωnµ + ω2
n) A · eµt︸ ︷︷ ︸

non-zero!

= 0 (15)

Equation 15 implies that only the first term (µ2 + 2γωnµ + ω2
n) is zero (since the ex-

ponential term can never be zero!). Therefore, we can solve the quadratic equation of
µ to solve µ in terms of γ and ωn:

µ2 + 2γωnµ + ω2
n = 0 → µ = −γωn ± ωn

√
γ2 − 1 (16)

What is the general solution to displacement? we need to consider three conditions
of γ2 − 1 (the term under the square root), as they correspond to 3 different types of
damping effects.

aLet us assume this trial solution is correct for now!

2.1 Condition 1: γ2 − 1 < 0 - Light Damping

If γ2 − 1 < 0, the general solution of a 2nd-order ODE should hold the format

x = eµt(A1 cos(ωnx) + iA2 sin(ωnx))

i.e., the solution might be a complex number.

To determine this, for convenience, we first define ωd = ωn
√

1 − γ2,

x = A1eµ1t + A2eµ2t

= A1e(−γωn+jωd)t + A2e(−γωn−jωd)t

= e−γωnt
(

A1
(

cos(ωdt) + j sin(ωdt)
)
+ A2

(
cos(ωdt)− j sin(ωdt)

))
= e−γωnt

[
(A1 + A2)︸ ︷︷ ︸

C=N cos ϕ

cos(ωdt) + j(A1 − A2)︸ ︷︷ ︸
−D=−N sin ϕ

sin(ωdt)
]

= e−γωnt(N cos ϕ cos ωdt − N sin ϕ sin ωdt
)

= e−γωntN cos(ωdt + ϕ)

(17)

To plot x against t:
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Two observations we can make here:

1. the occurrence of oscillations, this is described by the cosine term in Equation 17; and

2. the amplitude of oscillation decays with time (damped) - this is due to the exponential
term in Equation 17. The yellow envelops shown in Equation 2.1 are exactly the plot
of e−ωnγt and −e−ωnγt.

This type of damping oscillation is commonly known as the light damping.

2.2 Condition 2: γ2 − 1 > 0 - Heavy Damping

If γ2 − 1 > 0, there are two distinct roots of µ, therefore, the general solution becomes

x = A1eµ+t + A2eµ−t = A1e−(γωn+ωn
√

γ2−1)t + A2e−(γωn−ωn
√

γ2−1)t (18)

To plot x against t:
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The mass attains its equilibrium gradually without any oscillation. This is known as the
heavy damping.
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2.3 Condition 3: γ2 − 1 = 0 - Critical Damping

If γ2 − 1 = 0, the general solution of a 2nd-order ODE should hold the format

x = (A1 + A2t)eµt (19)

where in this situation, µ = −ωnγ. To plot x against t:
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The mass returns to the equilibrium position as quickly as possible (i.e., quickly within 1 os-
cillation). This is known as the critical damping. It is the threshold between heavy damping
and light damping.

Electrical analogy Three types of damped oscillations can be generated with the following
L-C-R circuit:

R L

CVtotal

The voltage across

• the resistor, R: Vr = RI

• the inductor, L: VL = L
dI
dt

• the capacitor, C: VC =
1
C

∫ t

0
I(τ)dτ

By Kirchhoff’s voltage law:

VR + VL + VC = Vtotal → RI + L
dI
dt

+
1
C

∫ t

0
I(τ)dτ = Vtotal
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Differentiate:

L
d2 I
dt2 + R

dI
dt

+
1
C

I = 0

which is a second-order, homogeneous differential equation. To solve this ODE, the corre-
sponding auxiliary equation is

Lm2 + Rm +
1
C

= 0

which yields two solutions

m1,2 =
−R
2L

±
√

R2 − 4L/C
2L

we need to discuss the value of
√

R2 − 4L/C to determine the type of damping:

• R2 > 4L/C: heavy damping

• R2 < 4L/C: under damping

• R2 = 4L/C: critical damping
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3 Forced Oscillation

So far, we have considered both undamped oscillation and damped oscillation - no further
external force was applied once the system was released from the initial position. How will
system dynamic behaves if we apply an external force to the system periodically?

m
F0 cos ωt

c

k

Figure 3: A spring-mass-damper mechanical system subjected to a periodic force

Figure 3 shows a spring-mass-damper (k-m-c) system subjected to a periodic external force
F(t) = F0 cos ωt. The equilibrium state of the system can be mathematically described by:

Ftotal = ma = −cv − kx + F0 cos ωt (20)

Re-arrange Equation 20, we could get

ma + cv + kx = F0 cos ωt (21)

Similarly, the velocity, v and the acceleration, a are defined as the 1st and 2nd derivative of

the displacement, x, with respect to the time, t: v =
dx
dt

, a =
d2x
dt2 . Therefore, Equation 10 can

be converted to an inhomogeneous 2nd-order ordinary differential equation.

m
d2x
dt2 + c

dx
dt

+ kx = F0 cos ωt (22)

and it is equivalent to
d2x
dt2 + 2γωn

dx
dt

+ ω2
nx =

F0

m
cos ωt (23)

where ωn is natural frequency, γ is damping factor1.

Solution Procedure and Discussions

To solve this ODE, we shall apply the trial solution x = x0 cos(ωt − ϕ). Therefore, we
have:

• the velocity, v =
dx
dt

= −x0ω sin(ωt − ϕ) = x0ω cos(ωt − ϕ +
π

2
); and

• the acceleration, a =
d2x
dt2 = −x0ω2 cos(ωt − ϕ) = x0ω2 cos(ωt − ϕ + π);

The relative location of x, v, and a can be roughly plotted as

1Why? See the previous chapter.
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rotation

displacement
velocity

acceleration

i.e., there exists a π/2 and π phase difference between the velocity and displacement,
and acceleration and displacement, respectively.

Expression the trial solution in Euler’s form: x = x0 cos(ωt − ϕ) = x0ej(ωt−ϕ) and
substitute into the governing equation:

−ω2x0ejωte−jϕ︸ ︷︷ ︸
ẍ

+2γωn jωx0ejωte−jϕ︸ ︷︷ ︸
ẋ

+ω2
n x0ejωte−jϕ︸ ︷︷ ︸

x

=
F0

m
ejωt (24)

Re-arrange,

�
��ejωte−jϕ(−ω2x0 + j2γωnωx0 + ω2

nx0) =
F0

m�
��ejωt (25)

What does Equation 25 tell us? Well, the term e−ϕj implies an anticlockwise rotation
of an angle ϕ. Therefore, Equation 25 can be graphically represented as

The length of F0/m (blue) can be parsed into 3 individual trajectories - ω2
nx0 is the

trajectory of the displacement, 2γωnωx0 is the trajectory of the velocity, and ω2x0 is
the trajectory of the accelerationa.

Therefore, we can represent the length (magnitude) of x0 using Pythagoras’ theorem,

|x0| =
F0/m√

(ω2
nω2)2 + (2γωnω)2

(26)
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and similarly, the phase of x0:

tan ϕ =
2γωnω

ω2
n − ω2 → ϕ = tan−1

(
2γωnω

ω2
n − ω2

)
(27)

Let us think about how the relations between ω, ωn, 2γωnω could affect the magnitude
response:

1. When ω → 0,

x0 =
F0

mω2
n
=

F0

k

which implies that x0 is stiffness controlled.

2. If ω → ∞,

ω2 =
F0

mx0
→ x0 =

F0

ω2m
which implies that x0 is mass controlled.

3. If ωn = ω, the gradient of the magnitude response |x0| with respect to ω is zero,
the peak magnitude of x0 occurs - also known as the resonance. The resonance
frequency is represented as:

ωp =
√

1 − 2γ2

aNote their directions, and correlates to the figure above!

Electrical analogy The forced oscillation can be generated with the following L-C-R circuit
with an additional periodic voltage source term:

V0 cos ωt

R L

C

The governing question of the system shown above is

L
d2 I
dt2 + R

dI
dt

+
1
C

I = V0 cos ωt
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