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Preface, Rationale, & Acknowledgement
These notes are compiled based on the lectures of Digital Biosignal Processing delivered by
Professor Dario Farina at the Department of Bioengineering, Imperial College London during
September-December 2021. Additional examples were adopted and/or inspired by various edu-
cational sources, including the notes on Digital Signal Processing byDr Aidan Hogg (Imperial),
recordings of Signals and Systems by Professor Alan Oppenheim (MIT), and notes on Signals
and Systems by Dr Michael Adams (University of Victoria).

I began drafting this document in 2021, completing the drafts for the first four sections by the
summer of 2022. The subsequent sections were drafted raggedly in December 2022, June 2023,
and December 2023, with the final proofreading completed in November 2024. It has been quite
some time since my undergraduate years, and given that my current research focus is relatively
distant from signal processing applications, I am less certain about the practical usefulness of
this document. However, what remains clear is that this document takes me back to that bit-
tersweet autumn of 2021 - Uren L9, RSM 335, unsolvable MiB coursework, and loads (!) of
MATLAB exercises.

Note that this document is still in its beta version (Nov. 2024). A few chapters are pending to
be proofread and improved.
 The LATEX files are now accessible on my GitHub repository. I hope it helps. Please report
typos and inconsistencies to binghuan.li19@imperial.ac.uk.

To my undergraduate years.

November, 2024
London, UK

Cover image: Signal Processing Workflow: From Analog to Digitally Filtered Outputs, repro-
duced based on a figure from the lecture notes by Robert F. Port.
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1 SAMPLING

Change in notation

From this section onward,Ω (‘Omega’) denotes the frequency in the context of a continuous-
time signal; whereas ω (‘omega’) denotes the frequency in the context of a discrete-time
signal.

Hence, the continuous-time Fourier transform (CTFT):

X(ω) =
∫ +∞

−∞
x(t)e− jωtdt︸ ︷︷ ︸

old notation

⇒ X( jΩ) =
∫ +∞

−∞
x(t)e− jΩ tdt︸ ︷︷ ︸

new notation

1 Sampling

xc(t) C/D converter
x[n]

discrete-time system
y[n]

D/C converter ŷr(t)

T T

Fig. 1: A very-brief overview of digital processing of continuous-time signals

Figure 1 illustrates a concise process of digital processing of a continuous-time signal.

• The C/D conversion involves sampling a continuous-time signal to obtain a discrete-time
signal.

• The D/C conversion involves the reconstruction of a continuous-time signal from the sam-
pled discrete-time signal.

1.1 Sampling of a Continuous-Time Signal

Mathematically, sampling of a continuous-time signal xc(t)→ x[n] is:

x[n] = xc(nT ) for −∞ < n <+∞

where T is sampling period, fs =
1
T
is sampling frequency (or Ωs =

2π
T

in radians).

• In general, the C/D transformation cannot be inverted.

• Infinite continuous signals can reproduce a given sequence of samples,

An ideal C/D converter applies the T property so that the sampling can be done without losing
information.

Impulse train modulator s(t) is:

s(t) =
+∞

∑
n=−∞

δ (t−nT )
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1 SAMPLING

The sampled signal xs(t) is obtained by multiplying the impulse train modulator (Figure 2.b)
with the continuous-time signal xc(t) of interest (Figure 2.a):

xs(t) = xc(t) s(t)

=
+∞

∑
n=−∞

xc(t)δ (t−nT )

=
+∞

∑
n=−∞

xc(nT )δ (t−nT )

The sampled signal, xs(t), is still defined in the continuous-time domain, but it contains all in-
formation in the sampled discrete-time domain.

Apply the Fourier transform (F{·}) to xs(t):

Xs(Ω) = F{xc(t)} ·F{s(t)}

=
1

2π
Xc(Ω)∗F{s(t)}

=
1
T

Xc(Ω)∗
+∞

∑
n=−∞

δ (Ω − kΩs)

=
1
T

+∞

∑
n=−∞

Xc(Ω − kΩs)

where sampling frequency Ωs = Ω0 =
2π
T .

Ω

Xs(Ω)

ΩN−ΩN

1

Ω

S(Ω)

−Ωs−2Ωs−3Ωs 0 Ωs 2Ωs 3Ωs

2π/T

Fig. 2: Spectrum of (left) the original continuous-time signal to be sampled, Xs(Ω) and (right) the sampler
S(Ω) (as a δ -train).

For sampled signals: ΩN is the signal bandwidth

• if Ωs ≥ 2ΩN , the replicas in the periodization do not overlap (Figure 3.a)

• if Ωs < 2ΩN , the replicas overlap, also known as aliasing(Figure 3.b).

Ω

Xs(Ω)

ΩN−ΩN Ωs−ΩN 2Ωs−2Ωs

1/T

(Ωs−ΩN)

(a) Sampling without aliasing when Ωs ≥ 2ΩN .

Ω

Xs(Ω)

Ωs

1/T

(Ωs−ΩN)

(b) Sampling with aliasing when Ωs < 2ΩN

Fig. 3: The signal copies remain separate under a high sampling rate; while the signals are overlapped
(aliasing) with a lower sampling rate.
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1 SAMPLING

1.1.1 Nyquist-Shannon Sampling Theorem

Nyquist-Shannon sampling theorem states that: to retain the ability to reproduce (recon-
struct) the original signal, the minimum sampling frequency during signal sampling must
be at least twice its frequency.

Mathematically, let xc(t) be a band-limited signal with Xc(Ω) = 0, for |Ω | ≥ΩN . Then xc(t) is
uniquely determined by its samples x[n] = xc(nT ), if

Ωs =
2π
T
≥ 2ΩN

where 2ΩN is the minimal sampling rate and referred to as the Nyquist rate.

Nyquist-Shannon sampling theorem provides the condition under which the C/D transformation
can be inverted without losing information, as shown in Figure 4.

0 0.005 0.01 0.015 0.02

-1

-0.5

0

0.5

1

0 0.005 0.01 0.015 0.02

-1

-0.5

0

0.5

1

0 0.005 0.01 0.015 0.02

-1

-0.5

0

0.5

1

0 0.005 0.01 0.015 0.02

-1

-0.5

0

0.5

1

Fig. 4: Sampling of a continuous signal xc(t) = sin(200πt): (left to right, top to bottom) Ωs = 0.5ΩN ,
Ωs = 1.25ΩN , Ωs = 2ΩN , Ωs = 4ΩN . According to the Nyquist-Shannon sampling theorem, aliasing
occurs when Ωs < 2ΩN

1.2 Practical Digital Processing of Continuous-Time Signals

xc(t)
anti-aliasing

filter

Haa( jΩ)

xa(t)

sample
and hold x0(t)

A/D
converter x̂[n]

discrete-time
system

ŷ[n]

D/A
converter yDA(t)

reconstruction
filter

H̃r( jΩ)

ŷr(t)

T T T

Fig. 5: Overview of practical digital processing of continuous-time signals
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1 SAMPLING

Ideal anti-aliasing filter: xc(t)→ xa(t) remove all frequencies in time-continuous signal that
are above half the sampling rate.

Haa( jΩ) =

{
1, |Ω | ≤ π/T

0, |Ω |> π/T

Sample and hold: xa(t)→ x0(t)

x0(t) = h0(t)∗
∞

∑
n=−∞

xc(nT )δ (t−nT )

Quantization: the A/D is seen as an integration of a quantizer and a coder. A quantizer is a
non-linear system that represents the amplitude values of the signal into a finite set of values.

In a uniform quantizer, sample values are rounded to the nearest quantization level, followed by
binary coding.

Practical D/A conversion: ŷ[n]→ yDA(t)

xc(t) =
+∞

∑
n=−∞

xc(nT )hr(t−nT ) =
+∞

∑
n=−∞

xc(nT )
sin(π(t−nT )/T )

π(t−nT )/T

xDA(t) =
+∞

∑
n=−∞

x[n]hp(t−nT )+
+∞

∑
n=−∞

e[n]hp(t−nT )

1.3 Example Questions

Question 1.1

The continuous-time signal xc(t) is sampled with sampling frequency Ωs to obtain the
sampled signal xs(t) = xc(t)∑+∞

−∞ δ (t−nT ) with T being the sampling interval (Ωs =
2π
T ).

The Fourier transform of xc(t) is Xc( jΩ) = 1
ΩN
|Ω |+ 1 for |Ω | ≤ ΩN and Xc( jΩ) = 0

for |Ω | > ΩN . Assuming Ωs = ΩN , which of the following expressions for the sampled
signal xs(t) is correct?

(a) xs(t) = xc(t)

(b) xs(t) = 1
T δ (t)

(c) xs(t) = ∑+∞
−∞ δ (t−nT )

(d) xs(t) = 0

(e) xs(t) = ∑+∞
−∞ xc(t−nT )

ANS: (d)
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2 DISCRETE-TIME SIGNALS AND SYSTEMS

2 Discrete-Time Signals and Systems

2.1 Discrete-Time Signals

A discrete-time signal is mathematically represented as a sequence of data. The sequence x
contains the numbers indexed by the discrete-time integer n:

x = {x[n]}, −∞ < n < ∞

Any arbitrary sequence can be expressed as the sum of scaled and delayed impulses:

x[n] =
+∞

∑
k=−∞

x[k]δ [n− k]

where δ [n− k] is the shift of the unit impulse sequence δ [n] (Kronecker delta), defined as

δ [n] =

{
0, n ̸= 0

1, n = 0

2.2 Discrete-Time Systems and Properties

x[n] T{·} y[n]

Fig. 6: Representation of a discrete-time system. T{·} is a transformation operator that maps an input
sequence x[n] into an output sequence y[n].

Example 2.1 The Moving Average System

The moving average system is a discrete-time system. It is defined as

y[n] =
1

M1 +M2 +1

M2

∑
k=−M1

x[n− k]

=
1

M1 +M2 +1
(x[n+M1]+ x[n+M1−1]+ ...+ x[n]+ x[n−1]+ x[n−M2])

The system computes the nth sample of the output sequence as the average of (M1+M2+

1) samples of the input sequence around the nth sample.

2.2.1 Memory Systems

A system is memoryless if the system output y[n] at every value of n depends only on the input
x[n] at the same value of n; i.e. its output cannot rely on any past or future values the input.

Example 2.2 AMemoryless System

y[n] = (x[n])2, for each value of n.

8



2 DISCRETE-TIME SIGNALS AND SYSTEMS

Example 2.3 A System with Memory: ideal accumulator

y[n] =
n

∑
k=−∞

x[k].

By setting the value n at any arbitrary point n = n0, we have

y[n0] =
n0

∑
k=−∞

x[k],

clearly, y[n0] depends on x[k] for −∞ < k < n0, hence, the system has memory.

2.2.2 Linear Systems

A system is linear if and only if

T{x1[n]+ x2[n]}= T{x1[n]}+T{x2[n]}= y1[n]+ y2[n]

and
T{ax[n]}= aT{x[n]}= ay[n]

Example 2.4 The Accumulator System

The system

y[n] =
n

∑
k=−∞

x[k]

is an accumulator system as the output at n is the sum of the present and all previous input
samples. The system is linear, as the proof shown below: define two arbitrary inputs x1[n]
and x2[n] and their corresponding outputs:

y1[n] =
n

∑
k=−∞

x1[k]

y2[n] =
n

∑
k=−∞

x2[k]

When x3[k] = ax1[n]+bx2[n],

y3[n] =
n

∑
k=−∞

x3[k]

=
n

∑
k=−∞

(ax1[n]+bx2[n])

= a
n

∑
k=−∞

x1[k]+b
n

∑
k=−∞

x2[k]

= ay1[k]+by2[k]

Therefore, the accumulator system is linear.
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2 DISCRETE-TIME SIGNALS AND SYSTEMS

2.2.3 Time-Invariant Systems

A system is time-invariant if the shift or delay of the input sequence causes a corresponding shift
in the output sequence. Mathematically, if y[n] = T{x[n]}, the input sequence x1[n] = x[n−n0]

produces at output the sequence y1[n] = y[n−n0].

Example 2.5 The Compressor System

A compressor is defined by the relation

y[n] = x[Mn], −∞ < n < ∞

with M a positive integer. The system creates the output sequence by selecting every
Mth sample.

This system is not time-invariant, as the proof shown below: consider a system output
y1[n] corresponding to the input x1[n] = x[n−n0],

y1[n] = x1[Mn] = x[Mn−n0]

If the system is time-invariant, the input to the system x1[n] should yield the output y[n−
n0],

y[n−n0] = x[M(n−n0)]

Clearly, x[Mn−n0] ̸= x[M(n−n0)]→ the system is not time-invariant.

2.2.4 Causality

A system is causal if, for every choice of n0, the output sequence value at the index n = n0

depends only on the input sequence values for n≤ n0, i.e., the system output purely depends on
the past and current input, not future input.

Example 2.6 The Forward and Backward Difference Systems

• The forward difference system is defined as

y[n] = x[n+1]− x[n]

Clearly, the forward difference system is not causal, since the current value of the
output depends on a future value of the input. Mathematically, consider two inputs
and their outputs:

– x1[n] = δ [n−1] −→ y1[n] = δ [n]−δ [n−1], for all n

– x2[n] = 0 −→ y2[n] = 0, for all n

Note that x1[n] = x2[n] for n≤ 0 a, so by definition of causality, y1[n] = y2[n] should
always hold for n ≤ 0, for which the case n = 0 is an exception that violates the
condition for causality - the system is not casual.

10



2 DISCRETE-TIME SIGNALS AND SYSTEMS

• The backward difference system is defined as

y[n] = x[n]− x[n−1]

The backward difference system is causal since the output only depends on the
present and past values of the input. Same mathematical proof as above.

aBy definition, n0 can be randomly selected, n0 = 1,2, ... also works for this example!

2.2.5 Stability

A system is stable if and only if every bounded input sequence produces a bounded output
sequence (bounded input, bounded output, BIBO). Mathematically, if the input x[n] is bounded,
there exists a fixed positive finite value Bx such that

|x[n]| ≤ Bx < ∞, for all n

and there exists a fixed positive finite value By corresponding to every bounded input,

|y[n]| ≤ By < ∞, for all n

Example 2.7 The Accumulator System (cont’d)

The accumulator system is not stable: consider the case when x[n] = u[n], the input is
bounded by Bx = 1. The output

y[n] =
n

∑
k=−∞

u[k] =

{
0, n < 0

(n+1), n≥ 0

Clearly, there is no finite bound By such that (n+1)≤ By < ∞. The system is unstable.

2.3 Discrete-Time Linear Time-Invariant (LTI) Systems

The output of an LTI system is fully determined by the response of the system to the impulse.

y[n] = T{x[n]}= T
{ +∞

∑
k=−∞

x[k]δ [n− k]
}
=

+∞

∑
k=−∞

x[k]T{δ [n− k]}=
+∞

∑
k=−∞

x[k]h[n− k]

where h[n− k] is the system response to the impulse δ [n− k].

The relation between the input and output of an LTI system is expressed by convolution.

y[n] =
+∞

∑
k=−∞

x[k]h[n− k] = x[n]∗h[n]

11



2 DISCRETE-TIME SIGNALS AND SYSTEMS

Example 2.8 Convolution

Find the convolution between x[n] and h[n] where x[n] =
(1

2

)n
u[n] and h[n] = u[n].

From the definition of convolution,

x[n]∗h[n] =
+∞

∑
k=−∞

x[k]h[n− k] =
+∞

∑
k=−∞

(
1
2

)k

u[k]u[n− k]

Since u[k] = 0 for k < 0, and u[n− k] = 0 for k > n, we can further conclude that

u[k]u[n− k] =

{
0, 0≤ k ≤ n

1, otherwise

leading to the convolution can be rearranged in the form

x[n]∗h[n] =
n

∑
k=0

(
1
2

)k

, for n≤ 0.

or, a more compact expression,

x[n]∗h[n] =

(
n

∑
k=0

(
1
2

)k
)

u[n],

which is a geometric sequence. The summation can be further found by

x[n]∗h[n] =


(

1
2

)n

−1

1
2
−1

=

[
2−
(

1
2

)n]
u[n].

2.3.1 Properties of Convolution

Convolution is commutative For any two sequences x[n] and h[n], we have

x[n]∗h[n] = h[n]∗ x[n].

Convolution is associative For any three sequences x[n], h1[n], and h2[n], we have

(x[n]∗h1[n])∗h2[n] = x[n]∗ (h1[n]∗h2[n]).

Convolution is distributive For any three sequences x[n], h1[n], and h2[n], we have

x[n]∗ (h1[n]+h2[n]) = x[n]∗h1[n]+ x[n]∗h2[n].

12



2 DISCRETE-TIME SIGNALS AND SYSTEMS

2.4 Example Questions

Question 2.1

Consider the linear, time-invariant (LTI) system with impulse response h[n] = δ [n]−
2δ [n−1]+3δ [n−2]. This system is:

(a) Non-causal, with memory

(b) Memoryless

(c) Non-causal, stable

(d) Causal, with memory

(e) Unstable

ANS: (d)

Question 2.2

Consider the deterministic discrete-time signals x1[n] = δ [n]−δ [n−1] and x2[n] = δ [n]−
2δ [n−1]+δ [n−2]. The convolution between x1[n] and x2[n] is equal to:

(a) δ [n]−3δ [n−1]

(b) δ [n]−3δ [n−1]+3δ [n−2]−δ [n−3]

(c) δ [n]−δ [n−3]

(d) δ [n]+3δ [n−1]+3δ [n−2]+δ [n−3]

(e) 0

ANS: (b)
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3 DISCRETE-TIME AND DISCRETE FOURIER TRANSFORM

3 Discrete-Time and Discrete Fourier Transform

3.1 Discrete-Time Fourier Transform

• The discrete-time Fourier transform (DTFT) is defined as

X(e jω) =
+∞

∑
n=−∞

x[n] e− jωn.

• Inverse transform

x[n] =
1

2π

∫ +π

−π
X(e− jω)e jωndω

= lim
∆ω→0

∑
k
[X(e jk∆ω)

∆ω
2π

]e jk∆ωn

Fourier transform decomposes sequences using a linear combination of complex expo-
nentials with incremental amplitudes.

• Therefore, the frequency response of a LTI system is the Fourier transform of the impulse
response:

H(e jω) =
+∞

∑
n=−∞

h[n]e− jωn

Example 3.1 Frequency Response of the Moving Average System

The impulse response of the moving average system is

h[n] =

{
1

M1+M2+1 , −M1 ≤ n≤M2

0, otherwise

The frequency response with M1 = 0 is

H(e jω) =
1

M2 +1

M2

∑
n=0

e− jωn

=
1

M2 +1

(
1− e− jω(M2+1)

1− e− jω

)
=

1
M2 +1

(e jω(M2+1)/2− e− jω(M2+1)/2)e− jω(M2+1)/2

(e jω/2− e− jω/2)e− jω/2

=
1

M2 +1
sin[ω(M2 +1)/2]

sinω/2
e− jωM2/2

3.2 Properties of DTFT

Periodicity If x[n] F←→ X(e jω), then

X(e jω) = X(e j(ω+2π)),

i.e., X(e jω) is 2π-periodic.

14



3 DISCRETE-TIME AND DISCRETE FOURIER TRANSFORM

Linearity If x1[n]
F←→ X1(e jω) and x2[n]

F←→ X2(e jω), then

a1x1[n]+a2x2[n]
F←→ a1X1(e jω)+a2X2(e jω),

where a1 and a2 are arbitrary real-valued or complex-valued constants.

Translation (Time and Frequency Shifting) If x[n] F←→ X(e jω), then the time shifting prop-
erty is

x[n−nd]
F←→ e− jωnd X(e jω),

where nd is an arbitrary integer. Similarly, the frequency shifting property is

e jωdnx[n]} F←→ X(e j(ω−ωd))

Conjugate Symmetry For a real-valued sequence x[n], if x[n] F←→ X(e jω), then

X(e jω) = X∗(e− jω),

where the asterisk * denotes the complex conjugate (not convolution here).

• The magnitude of DTFT, |X(e jω)| is an even function of ω .

• The magnitude of DTFT, ∠X(e jω) is an odd function of ω .

Derivation 3.1

Fourier transform:

X(e jω) =
+∞

∑
n=−∞

x[n]e− jωn

Replace ω to −ω:

X(e− jω) =
+∞

∑
n=−∞

x[n]e+ jωn

Take the complex conjugate of the Fourier transform above:

X∗(e− jω) =
+∞

∑
n=−∞

x∗[n]︸︷︷︸
x[n]

e− jωn

Since x[n] ∈ R, the complex conjugate of the Fourier transform is equivalent to Fourier
transform:

X(e− jω) = X∗(e− jω)

Furthermore, express the Fourier transform in terms of a real part and an imaginary part:

X(e jω) = XR(e jω)+ jXI(e jω)

The complex conjugate of the Fourier transform is thus

X∗(e− jω) = XR(e− jω)− jXI(e− jω)

15



3 DISCRETE-TIME AND DISCRETE FOURIER TRANSFORM

Equate the two expressions above,

XR(e jω) = XR(e− jω)

XI(e jω) =−XI(e− jω)

That’s saying, the real part of the Fourier transform is an even function of ω , and the
imaginary part of the Fourier transform is an odd function of ω . The magnitude of the
Fourier transform is an even function of ω; the phase of the Fourier transform is an odd
function of ω .

Time Reversal If x[n] F←→ X(e jω), then

x[−n] F←→ X(e− jω) = X∗(e jω).

Parseval’s Theorem
+∞

∑
n=−∞

|x[n]|2 = 1
2π

∫ +∞

−∞
|X(e jω)|2dω

where |X(e jω)|2 is the energy density spectrum of the sequence, which determines how the
energy is distributed in the frequency domain.

Convolution If x1[n]
F←→ X1(e jω) and x2[n]

F←→ X2(e jω), then

x1[n]∗ x2[n]
F←→ X1(e jω)X2(e jω),

i.e., the convolution of two signals in the time domain is equivalent to the multiplication in the
frequency domain. That is saying, for an LTI system, we have

y[n] = x[n]∗h[n] F←→ Y (e jω) = X(e jω)H(e jω).

16



3 DISCRETE-TIME AND DISCRETE FOURIER TRANSFORM

3.3 Common DTFT Pairs

x[n] X(e jω)

δ [n] 1

1 2π ∑+∞
n=−∞ δ (ω−2πn)

u[n] e jω

e jω−1 ∑+∞
n=−∞ πδ (ω−2πn)

anu[n], |a|< 1 e jω

e jω−a

−anu[−n−1], |a|> 1 e jω

e jω−a

a|n|, |a|< 1 1−a2

1−2acosω+a2

cos(ω0n) π ∑+∞
k=∞[δ (ω−ω0−2πk)+δ (ω +ω0−2πk)]

sin(ω0n) jπ ∑+∞
k=∞[δ (ω +ω0−2πk)−δ (ω−ω0−2πk)]

u[n]−u[n−M] e− jω(M−1)/2( sin(Mω/2)
sin(ω/2) )

3.4 From DTFT to Discrete Fourier Transform (DFT)

Sampling the frequency domain in DTFT leads to the DFT

• The discrete-time Fourier transform (DTFT) requires a continuity of its frequency ω .

• If we sample the frequency ω =
2πk
N

where k ∈ [0,N−1] from DTFT, the sampled signal
X [k] is

X [k] = X(e jω)|ω= 2πk
N

=
N−1

∑
n=0

x[n] e− j 2πk
N n.

This process is the discrete Fourier transform (DFT). DFT is a sequence with the same
duration as the discrete-time sequence, with a sampled frequency axis.

• The inverse discrete Fourier transform is

x[n] =
1
N

N−1

∑
k=0

X [k] e j 2πk
N n.

DFT is sufficient to reconstruct the original discrete-time series, given the discrete-time
series is of finite duration.

What happens whenwe sample the frequency domain? Let X̃(e jω) denote the signal results

from sampling X(e jω) at the frequency ω =
2πk
N

(where k ∈ [0,N−1]):

X̃(e jω) = X(e jω)

sampler︷ ︸︸ ︷
+∞

∑
k=−∞

δ
(

ω− 2πk
N

)
,

17



3 DISCRETE-TIME AND DISCRETE FOURIER TRANSFORM

by applying the inverse Fourier transform of X̃(e jω),

x̃[n] = N
+∞

∑
k=−∞

x[n− kN],

for which we now obtained a periodic signal (in its time domain). This tells us that sampling
the Fourier transform in the frequency domain corresponds to the periodization in the time
domain.

n
-12 0 12

x[n]

(a) Finite sequence of x[n]

n
-12 0 12

x̃[n] = N
+∞

∑
k=−∞

x[n− kN]

· · ·· · ·

(b) Periodic sequence x̃[n] corresponding to the sampling of Fourier transform of x[n]

Fig. 7: Illustration of a discrete-time signal x[n] and its periodic extension x̃[n].

3.4.1 Power Spectral Density of DFT

Power spectral density (PSD, also known as the power spectrum) quantifies the power of the
signal per unit frequency.

PSD[k] =
1
N
|X [k]|2 = 1

N

∣∣∣∣N−1

∑
n=0

x[n]e− j2πkn/N
∣∣∣∣2.

3.4.2 Zero-Padding

Zero padding is the process of appending extra zeros to the end of a signal before performing
DFT. Mathematically,

x̂[n] =

{
x[n], for n = 0, ...,N−1

0, for n = N, ...,M
,

where M, N are two integers, and M > N.

Zero padding causes DTF to be evaluated from DTFT with more samples in ωk, i.e., denser
frequency samples are obtained, hence, a smoother frequency spectrum.
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Fig. 8: Effect of zero-padding on the resolution of the Fourier Transform of a random signal.

3.5 Summary

3.6 Example Questions
Question 3.1

Consider the discrete-time signal x[n] = e
jπn
2 and a linear, time-invariant systemwith trans-

fer function H(e− jω) = e− jω . The output y[n] of this system when the input x[n] is:

(a) y[n] = 0

(b) y[n] =− je
jπn
2
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3 DISCRETE-TIME AND DISCRETE FOURIER TRANSFORM

(c) y[n] = je
jπn
2

(d) y[n] = x[n] · |H(e
jπ
2 )|

(e) y[n] = x[n]

ANS: (b)

Question 3.2

Consider the deterministic discrete-time signal x[n] = δ [n]− δ [n−1] which has a length
of N = 2 samples. Which of the following expressions for the Discrete Fourier Transform
(DFT) X [k] (for k = 0,1) of x[n] is correct?

(a) X [0] = 0, X [1] = 2

(b) X [0] = 1, X [1] =−1

(c) X [0] = j, X [1] =− j

(d) X [0] = e j π
3 , X [1] = e j π

4

(e) X [0] = 1, X [1] =− j

ANS: (a)

Question 3.3

Given the following discrete-time signal:

x[n] =


1, n = 0

−3, n = 1

−1, n = 2

0, n = 3

(a) Compute the discrete-time Fourier transform X(e jω).

ANS: X(e jω) = 1−3e− jω − e− j2ω .

(b) Compute the discrete Fourier transform X [k] over four points.

ANS: X [k] =


−3, k = 0

2+3 j, k = 1

3, k = 2

2−3 j, k = 3

.
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4 z-TRANSFORM

4 z-transform

4.1 z-transform

Definition

• The z-transform of a sequence x[n] is:

X(z) =
+∞

∑
n=−∞

x[n]z−n

where z = re jω is a complex variable.

• Recall that, the discrete-time Fourier transform is defined as

X(e jω) =
+∞

∑
n=−∞

x[n]e− jωn

Comparing z-transform and DTFT, it is clear that the discrete-time Fourier transform is
a special case of z-transform with r = 1. Equivalently, |z| = 1, as the unit circle with
0≤ ω ≤ 2π shown in Figure 9.

1 Re

Im

�

z = e j�

Unit circle

z-plane

Fig. 9: The unit circle with r = 1 in the complex z-plane

This tells us that, the z-transform can be viewed as a generalization of the classical Fourier
transform.

Remarks on the z-transform The z-transform is the counterpart of the Laplace transform in
the continuous time domain.

• Bilateral Laplace transform:

X(s) =
∫ +∞

−∞
x(t)e−stdt

• z-transform:

X(z) =
+∞

∑
n=−∞

x[n]z−n
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4 z-TRANSFORM

4.2 Region of Convergence

• What is the condition for DTFT to converge? Applying the property “The magnitude
of sum has to be less or equal than the sum of magnitudes” to the magnitude of Fourier
transform (DTFT):

|X(e jω)|=
∣∣∣∣ +∞

∑
n=−∞

x[n]e− jωn
∣∣∣∣≤ +∞

∑
n=−∞

|x[n]||����:1
e− jωn|

This conclusion helps us to determine the condition for the convergence of DTFT: if DTFT
converges, |X(e jω)|< ∞, that is

|X(e jω)| ≤
+∞

∑
n=−∞

|x[n]|< ∞

we thus only need to evaluate the value of ∑+∞
n=−∞|x[n]|.

• Not all Fourier transform converges! The power series representing the Fourier trans-
form does not converge for all sequences, the infinite sum may not always in finite.

Example 4.1

For x[n] = (1
2)

nu[n], the Fourier
transform converges to 2:

+∞

∑
n=−∞

|x[n]|= 2

Example 4.2

For x[n] = (2)nu[n], the Fourier
transform diverges:

+∞

∑
n=−∞

|x[n]|=+∞

• Extending the aforementioned concept to the z-transform: z-transform does not converge
for all values of z. For any given sequence, the region of values of z for which the z-
transform power series converges is called the region of convergence, or ROC.

|X(z)|=
∣∣∣∣ +∞

∑
n=−∞

x[n]z−n
∣∣∣∣≤ +∞

∑
n=−∞

|x[n]||z|−n < ∞

we only need to evaluate the value of ∑+∞
n=−∞|x[n]||z|−n.

• If the convergence condition is satisfied by an arbitrary value z1, then the convergence
condition is also satisfies by all values of z such that |z|= z1. Therefore, we can graphically
represent the ROC for 0≤ z1 < |z|< z2 ≤ ∞, as shown in Figure 10.
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Re

Im z-plane

Fig. 10: Graphical representation of region of convergence for 0≤ z1 < |z|< z2 ≤ ∞

Example 4.3 Sum of two exponential sequences

Consider a signal that is the sum of two real exponentials:

x[n] =
(

1
2

)n

u[n]+
(
− 1

3

)n

u[n]

The z-transform is

X(z) =
+∞

∑
n=−∞

{(
1
2

)n

u[n]+
(
− 1

3

)n

u[n]
}

z−n

=
+∞

∑
n=−∞

(
1
2

)n

u[n]z−n +
+∞

∑
n=−∞

(
− 1

3

)n

u[n]z−n

=
+∞

∑
n=0

(
1
2

z−1
)n

+
+∞

∑
n=0

(
− 1

3
z−1
)n

=
1

1− 1
2z−1

+
1

1+ 1
3z−1

=
2(1− 1

12z−1)

(1− 1
2z−1)(1+ 1

3z−1)

=
2z(z− 1

12)

(z− 1
2)(z+

1
3)

Poles: z= 1
2 , z=−1

3 , zero: z= 1
12 . For convergence of X(z), it requires both

∣∣∣∣(1
2
)z−1

∣∣∣∣< 1

and
∣∣∣∣(−1

3
)z−1

∣∣∣∣< 1. Equivalently, |z|> 1
2 and |z|> 1

3 . The corresponding pole-zero plot

and ROC is shown in Figure 11.
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11
2

Re

Im z-plane

1
12

– 1
3

Fig. 11: Pole-zero plot and ROC for 2z(z− 1
12 )

(z− 1
2 )(z+

1
3 )

Remarks

- Sum of geometric sequence: Sn =
a1(rn−1)

r−1
, where a1 is the first term of the

sequence, r is the common ratio. This explains how we get the sum of exponentials
above.

- One good way to understand the convergence criterion of X(z), we can think the
denominator should be negative (analogous to the stability criterion for a system
from Year-2 Control module).

Example 4.4 Finite-length truncated exponential sequence

Consider the signal

x[n] =

{
an, 0≤ n≤ N−1,

0, otherwise.

The z-transform is

X(z) =
N−1

∑
n=0

anz−n =
N−1

∑
n=0

(az−1)n =
1− (az−1)N

1−az−1 =
1

zN−1
zN−aN

z−a

The ROC is determined by the set of z values for which

N−1

∑
n=0
|az−1|n < ∞

The sum is finite as long as az−1 is finite, which in turn requires only |a|< ∞ and z ̸= 0,
leading to the ROC spanning over the entire z-planewith an exception of the origin (z= 0).

For example, with N = 16 and 0 < a < 1, the pole-zero plot is shown in Figure 12.
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Re

Im

15th-order pole
Unit circle

�

8

z-plane

a

Fig. 12: Pole-zero plot with N = 16

Specifically, the N roots of the numerator polynomial are at the z-plane locations

zk = ae j(2πk/N), k = 0,1, ...,N−1

4.3 Common z-Transform Pairs

Sequence Transform ROC

δ [n] 1 all z

u[n] 1
1−z−1 |z|> 1

−u[−n−1] 1
1−z−1 |z|< 1

δ [n−m] z−m all z except 0 (if m > 0) or ∞ (if m < 0)

anu[n] 1
1−az−1 |z|> |a|

−anu[−n−1] 1
1−az−1 |z|< |a|

nanu[n] az−1

(1−az−1)2 |z|> |a|

−nanu[−n−1] az−1

(1−az−1)2 |z|< |a|

cos(ω0n)u[n] 1−cos(ω0)z−1

1−2cos(ω0)−1+z−2 |z|> 1

sin(ω0n)u[n] sin(ω0)z−1

1−2cos(ω0)−1+z−2 |z|> 1

x[n] =

{
an, 0≤ n≤ N−1,

0, otherwise.
1−(az−1)N

1−az−1 |z|> 0

4.4 Properties of the z-transform

For the following properties, assume

x[n] Z←→ X(z) ROC = Rx

x1[n]
Z←→ X1(z) ROC = Rx1
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x2[n]
Z←→ X2(z) ROC = Rx2

Property Transform ROC

Linearity ax1[n]+nx2[n]
Z←→ aX1(z)+bX2(z) all Rx1∩Rx2

Time shifting x[n−n0]
Z←→ z−n0X(z) Rx(except at z = 0 and z = ∞)

Multiplication by
an exponential se-
quence

zn
0x[n] Z←→ X(z/z0) z0Rx(|z0||z1|< |z|< |z0||z2|)

Differentiation nx[n] Z←→ −zdX(z)
dz Rx

Conjugation x∗[n] Z←→ X∗(z∗) Rx

Time reversal x∗[−n] Z←→ X∗(1/z∗) 1
Rx
(1/|z2|< |z|< 1/|z1|)

Convolution x1[n]∗ x2[n]
Z←→ X1(z)X2(z) Rx1∩Rx2

Example 4.5

Given that
x1[n] = δ [n]+2δ [n−1]+δ [n−2]

x2[n] = δ [n]−δ [n−1]

The z-transforms of these two sequences are

X1(z) = 1+2z−1 + z−2

X2(z) = 1− z−1

Therefore, if y[n] = x1[n]∗ x2[n], then

Y (z) = X1(z)X2(z) = (1+2z−1 + z−2)(1− z−1) = 1+ z−1− z−2− z−3

⇕Z −1

y[n] = δ [n]+δ [n−1]−δ [n−2]−δ [n−3]

4.5 LTI Systems and z-Transform

• An LTI system is fully characterised by its impulse response. The output y[n] obtained
from the input x[n] is:

y[n] = x[n]∗h[n]

• From the convolution property of the z-transform

Y (z) = H(z)X(z)

where H(z) := Z {h[n]} is known as the system function of an LTI system.
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4.6 Example Questions

Question 4.1

The z-transform of the discrete-time signal x[n] converges for |a| ≤ |z| ≤ |b|, with 0 <

|a| ≤ |b|. Which of the following statements is always correct?

(a) The discrete-time Fourier transform of x[n] does not converge

(b) The discrete-time Fourier transform of x[n] converges

(c) The discrete-time Fourier transform of x[n] converges if 1 < |a|< |b|

(d) The discrete-time Fourier transform of x[n] converges if |a| ≤ 1 and |b| ≥ 1

(e) The discrete-time Fourier transform of x[n] converges if |a|< |b|< 1

ANS: (d)

Question 4.2

Consider a linear, time-invariant (LTI) system defined by the following difference equa-
tion:

y[n]+αy[n−1] = x[n]

where α is a real number. Which of the following statements is correct?

(a) The system is casual and stable for all values of α

(b) The system does not have poles for all values of α

(c) The system is not causal

(d) The system has a pole for z =−α

(e) The system has a pole for z = α

ANS: (d)

Question 4.3

Consider the discrete-time signals x[n] = a−nu[n−1] (where u[n] is the unit step signal and
a is a real and positive number different from zero). Which of the following expressions
for the z-transform of x[n] and its region of convergence (ROC) is correct?

(a) X(z) = 1
az−1 with ROC |z|> 1

a

(b) X(z) = 1
z−a with ROC |z|> a

(c) X(z) = 1
z+a with ROC |z|< 1

a

(d) X(z) = 1
az−1 with ROC |z|< 1

a
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(e) X(z) = 1
z−a with ROC |z|< a

ANS: (a)

Question 4.4

Consider the LTI system with the following impulse response h[n] = δ [n]− 2δ [n− k
2
]+

δ [n− k], with k an even number.

(a) Is the system stable? Is it causal?

ANS: stable and casual.

(b) Determine the system function and the transfer function, as a function of k.

ANS: H(z) = (1− e− jω k
2 )2.

(c) Determine the phase and the group delay of the system, as a function of k.

ANS: ∠H(e jω) =− k
2ω−π , delayed by k/2.
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5 DIGITAL FILTERS

5 Digital Filters

5.1 Filters with Linear Phase

Recall that a transfer function can be decomposed into the components of the magnitude and
phase. For example, an LTI system with the transfer function H(e jω) = e− jωα with |ω| < π
can be expressed as

H(e jω) = |H(e jω)|e− jωα , |ω|< π,

where |H(e jω)|= 1 is the magnitude, ∠H(e jω) =−ωα is the phase.

What does the parameter α do here? The parameter, α , introduces the group delay (or, the
time shift) to the input signal in its time domain. This will be more obvious if we further take
the inverse Fourier transform of H(e jω),

h[n] =
sin(π(n−α))

π(n−α)
,

where the input signal is delayed by the amount of α .

From the perspective of filters... The transfer function of the form H(e jω) = |H(e jω)|e− jωα

tells us that, for an input signal, x[n], the system first filters the signal by a zero-frequency
response, |H(e jω)|, following by shirting the filtered signal by α .

x[n]
|H(e jω)|

w[n]
e− jωα

y[n]

Fig. 13: Block diagram of a (filter) system with magnitude response |H(e jω)| followed by phase shift
e− jωα .

If α is an integer, then the impulse response becomes

h[n] = δ [n−α],

the phase of the filter is linearly proportional to ω - we thus say, the filter has a linear phase.

We can further generalize the linear-phase systems by extending the phase to be ∠H(e jω) =

β −ωα . Still, if α is an integer, the phase is linearly proportional to ω . The transfer function is

H(e jω) = A(e jω)e− jωα+ jβ .

5.2 Difference Equation

A difference equation is useful to describe an LTI system. It can be expressed in the following
form:

y[n] =
N

∑
k=1

aky[n− k]+
M

∑
k=0

bkx[n− k].
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Example 5.1

The LTI system
y[n] = x[n]+ x[n−1]+ ...+ x[n−50]

is described with a non-recursive difference equation.

Example 5.2

The LTI system
y[n] = y[n−1]+ x[n]− x[n−51]

is described with a recursive difference equation.

We can find the system function H(z) by taking the z-transform for the difference equation:

y[n] =
N

∑
k=1

aky[n− k]+
M

∑
k=0

bkx[n− k]

⇒ y[n]−
N

∑
k=1

aky[n− k] =
M

∑
k=0

bkx[n− k]

Z−→ Y (z)−
N

∑
k=1

akY (z)z−k =
M

∑
k=0

bkX(z)z−k

⇒ H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz−k

1−∑N
k=1 akz−k

(
=

B(z)
A(z)

)

5.3 Finite Impulse Response (FIR) Filters

5.3.1 Definition

If N = 0 in a difference equation, there is no recursive part in H(z) (i.e., the output solely
depends on the input, the denominator of H(z) is 1, or A(z) = 1),

H(z) =
M

∑
k=0

bk · z−k.

This type of filter is known as the finite impulse response (FIR) filter, as illustrated in Figure 14.

Fig. 14: Direct form of a finite impulse response (FIR) filter with linear phase
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Taking the inverse z-transform, we get

Y (z) = X(z)
M

∑
k=0

bk · z−k

︸ ︷︷ ︸
H(z)

Z −1
−−−→ y[n] =

M

∑
k=0

bk · x[n− k].

Properties of FIR filters

• No poles: all-zero filters. The system function H(z) is defined for the entire z-plane.

• They are inherently stable. Stability of an LTI system:

+∞

∑
n=−∞

|h[n]|< ∞

with h[n] of finite length. This condition is always satisfied.

5.3.2 FIR Filter Design by Truncation

Truncation of the impulse response is a simple way to design FIR filters. Mathematically, we
multiply the impulse response with a window function.

Example 5.3

The impulse response of an ideal low-pass filter (Figure 15) is

H(e jω) =

{
1, if |ω| ≤ ωc

0, otherwise
→ hd[n] =

ωc

π
sinωcn

ωcn

Fig. 15: Impulse response of an ideal low-pass filter

The FIR filter h[n] is created by windowing the ideal response:

hT [n] = h[n]w[n], for n = 0,1, ...,M

where w[n] is the window function that is only non-zero for n = 0,1, ...,M. Figure 16
illustrates the truncation process with a rectangular window function.
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"ripples"

truncating window

"ripples"

truncating window

Fig. 16: Truncation of h[n] with a rectangular window.

Remarks

1. Typically, the impulse response h[n] is non-causal or at least non-FIR. The signal
illustrated above is both non-causal and infinite.

2. Truncation of h[n] to ±M
2 makes the signal finite. Furthermore, the signal will

become causal if we delay the truncated signal hT [n] by M/2.

3. The ripples (indicated with an arrow in Figure 16) are produced due to the discon-
tinuity of the window a, also referred to as the “Gibbs phenomenon”.

aThis can be derived by quantifying the mean squared error in the frequency domain between H(e jω)

and HT (e jω). Clearly, the MSE is minimised when h[n] = hT [n], but practically not possible (regardless of
the number of M used in truncation)!

From remark (3), although it is impossible to fully remove the ripples, it is possible to truncate
with other windows to reduce the ripples. Hanning, Hamming, Blackman (also referred to as
Blackman-Harris) are examples of alternative windows to rectangular window.

5.3.3 FIR Filter Design by Other Methods

This section is NOT covered in the lectures. Massive materials are adopted from textbooks.
Please take prudence with the notations used in this section.

• Frequency sampling: take the IDFT of M+1 equally spaced samples of H(e jω).

HFIR(e jω) =
M

∑
n=0

h[n]e− jωn
∣∣∣∣
ω= 2π

M k, k=0,1,2...,M

F−1
−−−→ hFIR[n]

– Pros: giving an exact match at the sample points.
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– Cons: intermediate approximation is poor if the spectrum varies rapidly.

• Least-square

• Equiripple method: find the FIR filter to minimise the maximum weighted error, E , be-
tween the desired response and the actual frequency response of an FIR filter.

E (e jω) = W (ω)|H(e jω)−HFIR(e jω)|

where W (ω) is a weighting function used to adjust the weightings applied to the pass
band, transition band, and stopband:

W (ω) =


1/δ1, 0≤ ω ≤ ωc

0, ωc < ω < ωs

1/δ2, ωs ≤ ω ≤ π

5.4 Infinite Impulse Response (IIR) Filters

5.4.1 Definition

If N ̸= 0 in the generalized difference equation, the system function carries a recursive part in
the denominator.

H(z) =
∑M

k=0 bk · z−k

1−∑N
k=1 ak · z−k

Z −1
−−−→ y[n] =

M

∑
k=0

bk · x[n− k]−
N

∑
k=0

ak · y[n− k]

+ +

+

++

+

Fig. 17: Direct realisation of a digital IIR filter

The system function H(z) can also be represented as a cascade of filters by factorizing the nu-
merator and denominator:

H(z) = A
Π M1

k=1(1− fkz−1)Π M2
k=1(1−gkz−1)(1−g∗kz−1)

Π N1
k=1(1− ckz−1)Π N2

k=1(1−dkz−1)(1−d∗k z−1)
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5.4.2 IIR Filter Design by Bilinear Transformation

The bilinear transformation transforms from the continuous-time systems in the Laplace domain
to discrete-time systems in the z-domain.

An analogue filter can always be described by a frequency domain system function of the general
form,

H(s) = α
(s− z1)(s− z2)...(s− zm)

(s− p1)(s− p2)...(s− pn)

In bilinear transformation, we replace s by z:

z =
α + s
α− s

⇔ s = α
z−1
z+1

∣∣∣∣
z=e jω

= α
e j ω

2 − e− j ω
2

e j ω
2 + e− j ω

2
= jα tan

ω
2
= jΩ

Frequency mapping:
Ω = α tan

ω
2

Overall, the bilinear transformation allows the design of IIR filters from analogue filters: H(s)→
H(ω).
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6 Random Processes

6.1 Statistical Descriptions of Noise and Random Processes

Noise signals cannot be described analytically. However, noise realizations in a specific condi-
tion share some statistical properties.

Random process is the collection of random variables, denoted by xn. The theory of proba-
bility can characterise random variables.

Probability Distribution Function A random variable is characterized by its probability dis-
tribution function, Fxn(α,n),

Fxn(α,n) = P{xn ≤ α}.

Note that the probability density function increases monotonically with α .

Probability Density Function If xn takes a continuous range of values, it can also be charac-
terized by the probability density function, fxn(α,n),

fxn(α,n) =
∂Fxn(α,n)

∂α
.

6.1.1 Mean and Variance of a Distribution

1. The probability density between the range a and b is found

P{a≤ xn ≤ b}=
∫ b

a
fxn(α,n) dα

= Fxn(b,n)−Fxn(a,n).

For a =−∞ and b =+∞,

P{−∞≤ xn ≤+∞}=
∫ +∞

−∞
fxn(x,n) dx = 1

Example 6.1 Uniform distribution

Consider the probability density function of a uniform distribution described as

fxn(α,n) =

{
1

b−a , a≤ α ≤ b

0, otherwise
,

the corresponding probability distribution is

Fxn(α,n) =


0, a < 0

1
b−a(α−a), a≤ α ≤ b

1, α > b

.

As shown in Figure 18.
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Fig. 18: Plot of the probability density function and probability distribution function of a
sample uniform distribution.

2. Themean of a random variable, also the expected value, is defined as

mxn = ε{xn}=
∫ +∞

−∞
α fxn(α,n) dα,

where ε{·} denotes the expectation operator. Mathematically,

ε{g(xn)}=
∫ +∞

−∞
g(α) fxn(α,n) dα.

Example 6.2 Uniform distribution

For the uniform distribution shown in 1, the mean value is found

mxn =
∫ b

a

α
b−a

dα =
1

b−a
b2−a2

2
=

a+b
2

.

3. The variance is define as

σ2
xn
= ε{(xn−mxn)

2}=
∫ +∞

−∞
(α−mxn)

2 fxn(α,n) dα,

which is the second-order moment.

Example 6.3 Uniform distribution

For the uniform distribution shown in 1, the variance is found

σ2
xn
=
∫ b

a

(
α− a+b

2︸ ︷︷ ︸
mxn

)2 1
b−a

dα =
(b−a)2

12
.

6.1.2 Multivariant Probability Functions

Joint Probability Distribution Function The joint probability distribution function between
two random variables xn, xm is given as

Fxn,xm(α1,α2,n,m) = P{xn ≤ α1,xm ≤ α2},

The probability distribution function of order N is given as

Fxn1 ,...,xnN
(α1, ...,αN ,n1, ...,nN) = P(xn1 ≤ α1, ...,xnN ≤ αN).
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Joint Probability Density Function The joint probability density function between two ran-
dom variables xn, xm are given as

fxn,xm(α1,α2,n,m) =
∂ 2Fxn,xm(α1,α2,n,m)

∂α1∂α2
.

Fig. 19: Many sample observations (black) are shown from a joint probability distribution. Figure
adapted and modified based on WikiPedia.

Statistical Independence If xn and xm are statistically independent, or uncorrelated, the
joint probability distribution function is equivalent to the product between each single probabil-
ity distribution function,

Fxn,xm(α1,α2,n,m) = Fxn(α1,n)Fxm(α2,m),

this also implies that
fxn,xm(α1,α2,n,m) = fxn(α1,n) fxm(α2,m).

Hence, the mean values are also separable,

ε{xnxm}= ε{xn}ε{xm}= mxnmxm .

Autocorrelation Function The autocorrelation function of the random process is defined as
the expected value of the product xnxm, denoted by ϕxx[n,m],

ϕxx[n,m] = ε{xnxm}.

Example 6.4 Uniform Distribution

Given a random process with uncorrelated samples of uniform distribution in [1,1] (i.e.,
a =−1, b = 1), the autocorrelation function computed with the following steps

1. The mean is found as
mxn =

a+b
2

= 0.
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2. The variance is found as
σ2

xn
=

(b−a)2

12
=

1
3
.

3. The autocorrelation between m and n is

ϕxx[n,m] = ε{xnxm}=

{
ε{xn}ε{xm}, if m ̸= n

ε{x2
n}, if m = n

=

{
0, if m ̸= n
1
3 , if m = n

.

6.2 Stationarity

Definition A random process is stationary of order N, if its joint probability density functions
up to order N, does not depend on time shifts.

For example, N = 2, the stationarity states that

Fxn+k(α,n+ k) = Fxn(α,n), ∀k ∈ Z,

Fxn+k,xm+k(α1,α2,n+ k,m+ k) = Fxn,xm(α1,α2,n,m), ∀k ∈ Z.

A random process is strict-sense stationary if it is stationary for any order N.

6.2.1 Wide-Sense Stationarity

If the process is stationary of order 2 (N = 2). The following two properties can be derived,

1. its mean does not depend on time, i.e.,

mxn = ε{xn}= mx.

2. the autocorrelation function depends only on the time difference,

ϕxx[n,m] = ε{xnxm}=
∫ +∞

−∞

∫ +∞

−∞
α1α2 fxn,xm(α1α2,n,m) dα1dα2,

now define ℓ= m−n (for which ℓ can be regarded as a time shift), we have m = n+ ℓ

ϕxx[n,n+ ℓ] = ε{xnxn+ℓ}=
∫ +∞

−∞

∫ +∞

−∞
α1α2 fxn,xn+ℓ

(α1α2,n,n+ ℓ) dα1dα2

= ϕxx[ℓ].

A process with the properties above is referred to as wide-sense stationary (WSS).

While the two above properties derive from the definition of stationarity of order 2, they do not
imply stationarity of order 2.
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Example 6.5 Uniform Distribution

A random signal with uncorrelated samples of uniform distribution in [a,a]. The mean of
the signal is

mxn =
−a+a

2
= 0,

and the autocorrelation function is

ϕxx[n,m] =
a2

3
δ [n−m].

Since the mean does not depend on n and the autocorrelation function depends only on
the time lag (n−m), the process is WSS.

Cross-Correlation Function The cross-correlation function is defined as

ϕxy[n,m] = ε{xny∗m},

where xn and yn are two distinct random signals.

Chnage in notation

From this subsection onward, the random variable at the discrete-time n will be denoted as
x[n], instead of xn.

6.3 Ergodicity

Definition A process is ergodic for the mean (time-average) if, for any single realization of
the process of x[n],

⟨x[n]⟩= lim
L→∞

1
2L+1

L

∑
n=−L

x[n] = ε{xn}= mx.

Extended Properties A process is ergodic for the autocorrelation of

⟨x[n]x[n+m]⟩= lim
L→∞

1
2L+1

L

∑
n=−L

x[n]x[n+m] = ε{xnxn+m}= ϕxx[m].

For a WSS random process, ergodic for the autocorrelation function is

⟨x2[n]⟩= lim
L→∞

1
2L+1

L

∑
n=−L

x2[n] = ϕxx[0].

The value of the autocorrelation function is zero for an ergodic process corresponds to the power
of each of the process realizations.

If the process is zero-mean,

lim
L→∞

1
2L+1

L

∑
n=−L

x2[n] = ϕxx[0] = σ2
xn
.

39



6 RANDOM PROCESSES

6.3.1 Variability of Estimates

In practice, we cannot compute the exact time average since we do not record infinite samples.
Thus, we need to make estimates1 from a finite-length realisation.

• Estimating the mean:

m̂x =
1
L

L−1

∑
n=0

x[n].

• Estimating the variance:

σ̂2
x =

1
L

L−1

∑
n=0

(x[n]− m̂x)
2.

• Estimating the autocorrelation function:

ϕ̂xx[m] =
1
L

L−m−1

∑
n=0

x[n] x[n+m].

The quantities, m̂x, σ̂2
x , and ϕ̂xx[m] are also random variables. Hence, we can compute the mean

and variability of these estimated quantities.

• The mean of the estimated mean with a finite length:

ε{m̂x}= ε
{

1
L

L−1

∑
n=0

x[n]
}
=

1
L

L−1

∑
n=0

ε{x[n]}= mx,

this means the estimated mean is unbiased.

• The variability of the estimated mean with a finite length (for simplicity, assume the true
mean mx = 0):

σ2
m̂x

= ε{(m̂x− ε{m̂x})2}= ε{(m̂x−mx)
2}= ε

{(
1
L

L−1

∑
n=0

x[n]
)2}

=
σ2

x
L
.

Variability in Estimates of the Autocorrelation Function The estimate of the autocorrela-
tion function in the finite-length realization is a biased estimate.

ε{ϕ̂xx[m]}= 1
L

L−m−1

∑
n=0

ε{x[n] x[n+m]}= L−m
L

ϕxx[m] = (1− m
L
)︸ ︷︷ ︸

deviation from truth

ϕxx[m].

To fix this, an alternative estimator is proposed to eliminate the bias,

ϕ̂xx[m] =
1

L−m

L−m−1

∑
n=0

x[n] x[n+m].

1such estimated quantities are denoted with a superscript caret, ,̂ to distinguish from the real values
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6.4 Power Spectral Density

Definition The power spectral density (PSD) of a random process is the ensemble average of
the power spectrum of the random process realizations,

Φxx(e jω) = ε
{

lim
L→∞

1
2L+1

|XL(e jω)|2
}
,

where XL(e jω) = ∑L
n=−L x[n]e− jωn is the Fourier transform of the random variable x[n].

Signal Power The power spectral density of an ergodic random signal,

signal power=
1

2π

∫ +π

−π
Φxx(e jω)dω

Derivation 6.1

Start from the RHS of the equation shown above,

1
2π

∫ +π

−π
Φxx(e jω)dω

=
1

2π

∫ +π

−π
ε
{

lim
L→∞

1
2L+1

|XL(e jω)|2
}

dω

= ε
{

lim
L→∞

1
2L+1

1
2π

∫ +π

−π
|XL(e jω)|2dω

}
.

By Parseval’s theorem:

1
2π

∫ +∞

−∞
|X(e jω)|2dω =

+∞

∑
n=−∞

|x[n]|2.

Therefore,
1

2π

∫ +π

−π
Φxx(e jω)dω = ε

{
lim
L→∞

1
2L+1

+∞

∑
n=−∞

|x[n]|2
}
,

which is the power of the signal.

Extended Property The power spectral density of a WSS random process is the discrete-time
Fourier transform (DTFT) of the autocorrelation function,

Φxx(e jω) = F{ϕxx[m]},

where F{·} denotes the discrete-time Fourier transform.

Derivation 6.2

|XL(e jω)|2 = XL(e jω)X∗L (e
jω)

=
L

∑
n=−L

L

∑
r=−L

x[n]x∗[r]e− jω(n−r).
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Therefore,

Φxx(e jω) = lim
L→∞

ε
{

1
2L+1

L

∑
n=−L

L

∑
r=−L

x[n]x∗[r]e− jω(n−r)
}

= lim
L→∞

{
1

2L+1

L

∑
n=−L

L

∑
r=−L

ε{x[n]x∗[r]e− jω(n−r)}
}
.

For a WSS random signal,

ε{x[n]x∗[r]}= ϕxx[n,r] = ϕxx[n− r].

Therefore,

Φxx(e jω) = lim
L→∞

{
1

2L+1

L

∑
n=−L

L

∑
r=−L

ε{ϕxx[n− r]e− jω(n−r)}
}
= F{ϕxx[m]}.

Therefore, for a WSS and ergodic random signal,

Φ(e jω) = F

{
lim
L→∞

1
2L+1

L

∑
n=−L

x[n] x[n+m]

}
.

This tells us, the PSD is the discrete-time Fourier transform of the autocorrelation function of
the process.

6.5 Periodogram

Definition The periodogram is an estimation of the PSD with the limit neglected.

Φ̂xx(e jω) =
1

2L+1
|XL(e jω)|2

Therefore, it can be shown that the estimation of PSD from the periodogram and from the auto-
correlation function is exactly the same:

Φ̂xx(e jω) = DT FT
{

1
2L+1

n=L

∑
n=−L

x[n] x[n+m]

}
= DT FT{ϕ̂xx[m]}= 1

2L+1
|XL(e jω)|2

Bias of the Periodogram Estimate The expected value of the bias is

ε{Φ̂xx(e jω)}= ε
{

1
2L+1

|XL(e jω)|2
}

This is equivalent to

xL[n] =

{
x[n], −L≤ n≤ L

0, otherwise
= x[n] ·w2L+1[n] with w2L+1[n] =

{
1, −L≤ n≤ L

0, otherwise

Therefore, the periodogram is a biased estimate. The estimate tends to the PSD of the windowed
random signal,

ε{Φ̂xx(e jω)}= Φxx(e jω)∗ |W2L+1(e jω)|2
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Bartlett’sMethod Amajor problem of the periodogram is the variance of the estimate of the
PSD is proportional to the square of the PSD value and remains constant with increasing L.

To mitigate this issue, we need a compromise between the bias and variance of the estimate.
With N recorded samples, one could compromise the bias by dividing N by the number of in-
tervals K, yielding L = N/K.

Thus, we can estimate a periodogram by summing multiple “piecewise” periodograms on each
interval:

Φ̂B
xx(e

jω) =
1
K

K

∑
r=1

Φ̂xrxr(e
jω) with Φ̂xrxr =

1
L
|Xr(e jω)|2

The expected values of the periodograms:

ε{Φ̂B
xx(e

jω)}= ε
{

1
K

K

∑
r=1

Φ̂xrxr(e
jω)

}
= Φxx(e jω)∗ |W2L+1(e jω)|2

The variance of the periodograms:

var{Φ̂B
xx(e

jω)}= var
{

1
K

K

∑
r=1

Φ̂xrxr(e
jω)

}
=

1
K

var{Φ̂xx(e jω)}

The variance of the estimation decreases as K increases.

6.6 Filtering of Random Signals

y[n] = x[n]∗h[n] =
+∞

∑
k=−∞

x[k]h[n− k] =
+∞

∑
k=−∞

h[k]x[n− k]

Mean of y[n]

my[n] = ε
{ +∞

∑
k=−∞

x[k]h[n− k]
}
=

+∞

∑
k=−∞

h[k]ε{x[n− k]}= mx

+∞

∑
k=−∞

h[k]
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Autocorrelation function of y[n]

ϕyy[n, ℓ] = ε{y[n] y[n+ ℓ]}

= ε
{ +∞

∑
k=−∞

h[k]x[n− k]
+∞

∑
k=−∞

h[k]x[n+ ℓ− k]
}

= ε
{ +∞

∑
k=−∞

+∞

∑
r=−∞

h[k] h[r] x[n− k] x[n+ ℓ− r]
}

=
+∞

∑
k=−∞

+∞

∑
r=−∞

h[k] h[r] ε{x[n− k] x[n+ ℓ− r]}

=
+∞

∑
k=−∞

+∞

∑
r=−∞

h[k] h[r] ϕxx[ℓ− r+ k︸ ︷︷ ︸
def. r−k=q

]

=
+∞

∑
k=−∞

+∞

∑
q=−∞

h[k] h[k+q] ϕxx[ℓ−q]

(define g[q] =
+∞

∑
k=∞

h[k] h[k+q] = h[q]∗h[−q])

=
+∞

∑
q=−∞

g[q]ϕxx[ℓ−q] = g[ℓ]∗ϕxx[ℓ] = ϕyy[ℓ]

PSD of y[n] The PSD of y[n] is the discrete-time FT of the autocorrelation function ϕyy[ℓ],

ϕyy[ℓ] = g[ℓ]∗ϕxx[ℓ]

with g[q] = h[q]∗h[−q],

Φyy(e jω) = F{g[ℓ]∗ϕxx[ℓ]}= G(e jω) ·Φxx(e jω)

with
G(e jω) = F{h[q]∗h[−q]}= H(e jω) ·H∗(e jω) = |H(e jω)|2

Therefore,
Φyy(e jω) = |H(e jω)|2 ·Φxx(e jω)

6.7 Linear Predictor

The mean square error for the linear predictor

ε{|e[n]|2}= ε
{(

x[n]−
N

∑
k=1

akx[n− k]
)2}

= ϕxx[0]+
N

∑
k=1

N

∑
r=1

akarϕxx[r− k]−2
N

∑
k=1

akϕxx[k]

Minimising the MSE,
∂ε{|e[n]|2}

∂aℓ
= 0, ℓ= 1,2, ...,N

with
∂ε{|e[n]|2}

∂aℓ
= 2

N

∑
k=1

akϕxx[k− ℓ]−2ϕxx[ℓ]
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Hence

2
N

∑
k=1

akϕxx[k− ℓ]−2ϕxx[ℓ] = 0 ⇒
N

∑
k=1

akϕxx[k− ℓ] = ϕxx[ℓ]

which is equivalent to
ε{e[n] x[n− k]}= 0, k = 1,2, ...,N

The error in the linear prediction can thus be seen as part of the innovation of the process that is
not contained in the previous N samples.

6.8 Modelling

Consider an LTI system with the input u[n], system function H(e jω), and output x[n], for which
u[n] is a white random process.

u[n] H(e
jω
) x[n]

Recall that in Section 5, the system response can be expressed using the difference equation

x[n] =
N

∑
k=1

akx[n− k]+
M

∑
k=0

bku[n− k].

Further, the system function corresponding to the difference form is

H(z) =
∑M

k=0 bkz−k

1−∑N
k=1 akz−k

⇔ H(e jω) =
∑M

k=0 bke− jωk

1−∑N
k=1 ake− jωk

,

Therefore, the power spectrum of x[n] is found

Φxx(e jω) = σ2
u · |H(e jω)|2 = σ2

u ·
∣∣∣∣ ∑M

k=0 bke− jωk

1−∑N
k=1 ake− jωk

∣∣∣∣2.
This model is known as the autoregressive, moving average model (ARMA).

• By setting M = 0: autoregressive (AR) model

x[n] =
N

∑
k=1

akx[n− k]+u[n] and Φxx(e jω) = σ2
u ·

1
|1−∑N

k=1 ake− jωk|2

• By setting N = 0: moving average (MA) model

x[n] =
M

∑
k=0

bku[n− k] and Φxx(e jω) = σ2
u ·

∣∣∣∣∣ M

∑
k=0

bke− jωk

∣∣∣∣∣
2

6.9 Example Questions
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Question 6.1

Let x[n] and y[n] be stationary, uncorrelated to each other, discrete-time random processes
with mean values mx and my, respectively, and w[n] = x[n] · y[n]. The mean value of w[n]
is

(a) Always zero

(b) Zero only of mx = 0 and my = 0

(c) Zero if mx = 0 or my = 0

(d) Always smaller than mx

(e) Always smaller than my

ANS: (c)

Question 6.2

Let x[n] and y[n] be two stationary, zero-mean, uncorrelated to each other, discrete-time
random processes, with variances σ2

x and σ2
y , and power spectra Φxx(e jω) and Φyy(e jω),

respectively.

Let’s define the random process w[n] = x[n]+2y[n], with variance σ2
w and power spectrum

Φww(e jω). Which of the following relations is always correct?

(a) Φww(e jω) = 2Φxx(e jω)Φyy(e jω)

(b) Φww(e jω) = Φxx(e jω)+2Φyy(e jω)

(c) σ2
w = σ2

x +2σ2
y

(d) σ2
w = σ2

x +4σ2
y

(e) σ2
w = 0

ANS: (d)

Question 6.3

Consider the wide-sense stationary (WSS) random process x[n], with autocorrelation func-
tion ϕxx[ℓ] and unitary variance. The autocorrelation function ϕxx[ℓ] is equal to zero for
all values of the time lag ℓ for which |ℓ| ≥ 3. The random process x[n] is down-sampled
by a factor of 3 to obtain the down-sampled random process e[n]. Which of the following
expressions/statements for the autocorrelation function ϕee[ℓ] of e[n] is correct?

(a) ϕee[ℓ] = δ [ℓ]

(b) ϕee[ℓ] = ϕxx[ℓ]
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(c) ϕee[ℓ] = 3ϕxx[ℓ]

(d) ϕee[ℓ] = 0 for all values of ℓ

(e) ϕee[ℓ] is an odd function

ANS: (d)

Question 6.4

Consider the cascade of two LTI systems as represented below:

where h1[n] = δ [n]−δ [n−1] and H2(e jω) =

{
1, |ω|< ωc

0, ωc < |ω| ≤ π
with ωc < π . More-

over, e[n] is a stationary, white random signal, with zero mean and power σ2
e = 1.

(a) Find and plot the power spectrum Φ f f (e jω) of the random signal f [n].

ANS: Φ f f (e jω) = 2(1− cosω).

(b) Find the autocorrelation function ϕ f f [ℓ] of the random signal.

ANS: ϕ f f [ℓ] = 2δ [ℓ]−δ [ℓ−1]−δ [ℓ+1].

(c) Find the power spectrum Φgg(e jω) of the random signal g[n] as a function of ωc

(cut-off frequency of the second LTI system).

ANS: ϕgg[ℓ] =

{
2(1− cosω), |ω| ≤ ωc

0, ωc < |ω| ≤ π
.

(d) Find the power σ2
e of the random signal g[n] as a function of ωc (cut-off frequency

of the second LTI system).

ANS: σ2
g =

2ωc

π
.
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