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1 DEFINITION, CLASSIFICATION, AND PROPERTIES OF SIGNALS

1 Definition, Classification, and Properties of Signals

1.1 Definition of signals
• Signals describe physical phenomena as patterns of variations of some form.

• Mathematically, signals are functions of one or more independent variables.

• For example, a signal s(t) can be a function of the continuous independent variable time
t ∈ [α, β] A two-dimensional signal f(x, y) can be a function of two spatial coordinates
x, y.

1.2 Continuous and Discrete-time Signals
• Signals can be a function of the continuous time variable, in which case we will use the
notation x(t) with t ∈ R; or of the discrete time variable, in which case we will use the
notation x[n] with n ∈ Z. (Figure 1)

0 0

(a) (b)

Fig. 1: Illustration of a (a) continuous-time signal x(t) and (b) a discrete-time signal x[n]

• Discrete-time signals are often (but not necessarily) a sampling of continuous-time sig-
nals.

x[n] = xc(nT ), −∞ < n < +∞

T is sampling period.

• A discrete-time signal can be represented as a sequence of numbers, or, a vector.

1.2.1 Digital Signals

• When we discuss a digital signal, we often mean the signal that has been sampled (cap-
tured at regular points in time) and quantisised.

• When one refers to a 12-bit signal, they are referring to the number of amplitude quanti-
sation levels.

• Sampling a continuous signal may be done without losing any information from the
original signal. Conversely, quantisation always implies losing information.

We focus on the signals of one independent variable!
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1 DEFINITION, CLASSIFICATION, AND PROPERTIES OF SIGNALS

Fig. 2: Sampling and quantisation

1.3 Deterministic and Stochastic Signals
• Deterministic: a signal that can be predicted exactly (an analytical formulation exists).

– Example: x(t) = sin(2πt)

• Stochastic: a signal that cannot be predicted exactly before it has “occurred”; any signal
that conveys information to us when we observe it.

– Example: Thermal noise across a resistor, EEG traces, etc.

• We can oftenmeaningfully describe the statistical properties of stochastic signals by build-
ing a model of their generation (stochastic processes).

We will mainly deal with deterministic signals in this course!

1.4 Periodic Signals
• A periodic continuous-time signal x(t) has the property that there is a positive value of T
for which x(t) = x(t+T ) for all values of t (similar definition for discrete-time signals).

• A periodic signal has the property that it is unchanged by a time shift of T , we will say
that x(t) is periodic with period T . (Figure 3)

... ...

Fig. 3: A periodic signal with the period T
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1 DEFINITION, CLASSIFICATION, AND PROPERTIES OF SIGNALS

1.5 Signal Energy and Power
For a continuous-time signal x(t) for t1 ≤ t ≤ t2 and for a discrete-time signal x[n] for n1 ≤
n ≤ n2, energy and power can be represented as follows:

Energy(continuous time) =
∫ t2

t1

|x(t)|2 dt

Power(continuous time) =
1

t2 − t1

∫ t2

t1

|x(t)|2 dt

Energy(discrete time) =
n2∑

n=n1

|x[n]|2

Power(discrete time) =
1

n2 − n1

n2∑
n=n1

|x[n]|2

Electrical circuit analogy

We get the conclusion above from the calculation for electrical power and energy. Let
v(t) and i(t) represent the voltage and current across the resistor of resistance R.

• The instantaneous power across the resistor is the product v(t)i(t), which is pro-
portional to v2(t).

• The total energy ∫ t2

t1

1

R
v2(t) dt

• The average power
1

t2 − t1

∫ t2

t1

1

R
v2(t) dt

Similar properties can be applied to any continuous-time signals and discrete-time signals.

• Often, the signals are directly related to physical quantities capturing power and energy
in a physical form.

• These properties are important characteristics of signals, even if in some cases do not
reflect physical energy or power.

1.5.1 Energy and Power of a Generic Signal

Extend the range to: −∞ < t < +∞ or −∞ < n < +∞

• In continuous time:
Energy =

∫ +∞

−∞
|x(t)|2 dt

Power = lim
T→∞

1

2T

∫ T

−T

|x(t)|2 dt
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1 DEFINITION, CLASSIFICATION, AND PROPERTIES OF SIGNALS

• In discrete time:

Energy =
+∞∑

n=−∞

|x[n]|2

Power = lim
N→+∞

1

2N + 1

N∑
n=−N

|x[n]|2

We will use the mathematical definitions above, regardless of the direct physical meaning of
each term!
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2 TYPES OF SIGNALS

2 Types of Signals

2.1 Periodic Complex Exponential Signals in Continuous-time Domain
x(t) = ejω0t

• Periodic, period T = 2π
|ω0| .

• The signal x(t) = e−jωot has the same period.

• The complex exponential defined above is closely related to the sinusoidal signal:

x(t) = A cos(ω0t+ ϕ) =
A

2
ejϕejω0t +

A

2
e−jϕe−jω0t

which has the same period T = 2π
|ω0| .

• The complex exponentials and sinusoidal signals have infinite energy and finite power.

– Example: for the signal x(t) = A cos(2πω0t+ ϕ) with the period T1,

Power =
A2

2

2.2 Periodic Complex Exponential Signals in Discrete-time Domain
x[n] = ejω0n

And the sinusoidal signal becomes

x[n] = A cos(ω0n+ ϕ) =
A

2
ejϕejω0n +

A

2
e−jϕe−jω0n

• n ∈ Z (i.e., n is an integer). Thus, x[n] is the same signal for ω0 + 2πk with k ∈ Z. The
frequency of oscillation in discrete time exponentials does not increase monotonically but
is limited to 2π.

• x[n] is not always periodic.

2.3 The Unit Impulse in Discrete-time Domain
The unit impulse function (or, delta function) defined in the discrete-time domain (Figure 4) is

δ[n] =

{
1, n = 0

0, n ̸= 0

Fig. 4: The unit impulse
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2 TYPES OF SIGNALS

The discrete-time unit impulse delayed by an integer k (Figure 5) is defined as:

δ[n− k] =

{
1, n = k

0, n ̸= k

Fig. 5: The unit impulse delayed by an integer k

• For any discrete-time signal x[n], we have

x[n] δ[n− k] = x[k] δ[n− k]

This implies any signal multiplied by the unit impulse is zeroed for all time samples, apart
from the integer time where the unit impulse is centred.

• From the property above, we have:

∞∑
n=−∞

x[n]δ[n− k] =
∞∑

n=−∞

x[k] δ[n− k]

= x[k]
�������*1,when k = n
∞∑

n=∞

δ[n− k]

= x[k]

• Any arbitrary discrete-time signal can be expressed as the sum of scaled and delayed
impulses:

x[n] =
+∞∑

k=−∞

x[k]δ[n− k]

2.4 The Unit Step in Discrete-time Domain
The unit step function defined in the discrete-time domain (Figure 6) is

u[n] =

{
1, n ≥ 0

0, n < 0
=

+∞∑
k=0

δ[n−k]
...

...

Fig. 6: Unit step in discrete-time domain

• The discrete-time unit impulse function is the derivative of the discrete-time unit step
function.

δ[n] = u[n]− u[n− 1]
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2 TYPES OF SIGNALS

2.5 The Unit Step in Continuous-time Domain
The unit step function defined in the continuous-time domain (Figure 7) is

u(t) =

{
1, t > 0

0, t < 0

Fig. 7: Unit step in continuous-time domain

• The continuous-time unit step function has a discontinuity in t = 0, hence, it is not dif-
ferentiable.

• The aforementioned issue could be addressed using the concept of limit. By expressing
the delta function as the derivative of the unit step function over an infinitesimal period
of time, ∆, we have

δ∆(t) =
du∆(t)
dt

where

– The area of δ∆(t) equals to 1 at any value of ∆.(Figure 8, right)
– As ∆→ 0, u∆(t)→ u(t). (gradient→ 0) (Figure 8, left)
– As∆→ 0, the impulse δ∆(t) becomes of shorter duration and higher amplitude:δ(t) =
lim∆→0 δ∆(t)

Fig. 8: Continuous approximation to unit step

• The unit step function can be reconstructed by integrating the delta function from negative
infinity to t (Figure 9, left),

u(t) =

∫ t

−∞
δ(τ)dτ =

{
1, t ≥ 0

0, t < 0

where τ is a simply a dummy variable used to replace the notation of t.

• for the discrete-time case, the unit impulse in the continuous-time domain can be shifted
along the time axis. The unit impulse shifted by the time delay is δ(t− σ).
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2 TYPES OF SIGNALS

interval of integration
interval of integration

Fig. 9: Unit impulse shifted by the time delay

• In continuous-time domain: (similar to
discrete-time domain)

x(t)δ∆(t) ≈ x(0)δ∆(t)

As δ∆(t)→ δ(t): better approximation

x(t)δ(t) = x(0)δ(t)

More generally: with time-shifting

x(t)δ(t− t0) = x(t0)δ(t− t0)
Fig. 10: Continuous approximation of the unit im-
pulse

• We also obtain: ∫ ∞

−∞
x(t)δ(t− t0)dt =

∫ ∞

−∞
x(t0)δ(t− t0)dt

= x(t0)

∫ ∞

−∞
δ(t− t0)

= x(t0)

• This implies that any arbitrary continuous-time signal x(t) can be represent as:

x(t) =

∫ ∞

−∞
x(τ)δ(t− τ)dτ

2.5.1 Convolution

We define the following transformation between two signals (convolution):

y(t) =

∫ ∞

−∞
x(τ) h(t− τ)dτ = x(t) ∗ h(t)

y[n] =
+∞∑

k=−∞

x[k] h[n− k] = x[n] ∗ h[n]
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2 TYPES OF SIGNALS

Convolution in the time main is equivalent to the multiplication in the frequency domain!

For any continuous-time signal and any discrete-time signal:

x(t) = x(t) ∗ δ(t)

x[n] = x[n] ∗ δ[n]

by extension for arbitrary delays:

x(t− t0) = x(t) ∗ δ(t− t0)

x[n− k] = x[n] ∗ δ[n− k]

Summary of properties of the unit impulse

• For multiplication:
x(0) · δ(t) = x(t) · δ(t)

x[0] · δ[n] = x[n] · δ[n]

x(t0) · δ(t− t0) = x(t) · δ(t− t0)

x[k] · δ[n− k] = x[n] · δ[n− k]

• For convolution:
x(t) = x(t) ∗ δ(t)

x[n] = x[n] ∗ δ[n]

x(t− t0) = x(t) ∗ δ(t− t0)

x[n− k] = x[n] ∗ δ[n− k]

12



3 SIMPLE OPERATIONS ON SIGNALS

3 Simple Operations on Signals

3.1 Transformations of the Time Variable
• Time delay

• Time reversal

• Time scaling

time 

delay

time 

reversal

time 

scaling

Fig. 11: Transformations applies to the time variable: time delay (left middle), time reversal (left bottom),
time scaling (right)

3.2 Amplitude Transformation
y(t) = Ax(t) + B

where A,B are constants.

3.3 Linear Combination
• In continuous-time domain:

y(t) = a1x1(t) + a2x2(t) + ...+ aNxN(t)

• In discrete-time domain:

y[n] = a1x1[n] + a2x2[n] + ...+ aNxN [n]

where ai ∈ C, i = 1, 2, ..., N are real or complex numbers.
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3 SIMPLE OPERATIONS ON SIGNALS

3.4 Multiplication
• In continuous-time domain:

y(t) = x1(t) · x2(t)

• In discrete-time domain:
y[n] = x1[n] · x2[n]

This implies instantaneous multiplication for each time instant or each discrete time sample.

3.5 Scalar Products and Norms
3.5.1 Scalar Product and Norm of Vectors

• The scalar product between two 3-D vectors A⃗ and B⃗: projection of A⃗ on B⃗.

A⃗ · B⃗ = Ax · Bx + Ay · By + Az · Bz = |A⃗| · |B⃗|cos(ϕ)

• For vectors, the Euclidean norm, or norm-2, is the length of vectors in Euclidean space:

||A⃗||2 =
√
A⃗ · A⃗ = A =

√
A2

x + A2
y + A2

z

3.5.2 Scalar Product and Norm of Discrete-time Signals

• Scalar product (or, inner product) between two discrete-time signals, x1[n] and x2[n]:

⟨x1[n], x2[n]⟩ =
∞∑

n=−∞

x1[n]x
∗
2[n]

• Norm-2 for a discrete-time signal x[n]:

||x[n]||2 =
√
⟨x[n], x[n]⟩ =

√√√√ ∞∑
n=−∞

|x[n]|2 =

(
∞∑

n=−∞

|x[n]|2
) 1

2

norm-2 is the square root of the energy of the signal

• Norm-p for a discrete-time signal, x[n]:

||x[n]||p =

(
∞∑

n=−∞

|x[n]|p
) 1

p

, for 1 ≤ p <∞

– For p = 1 (norm-1):

||x[n]||1 =
∞∑

n=−∞

|x[n]|

– For p→∞: infinity norm / maximum norm:

||x[n]||∞ = max
n
|x[n]|

• Norms are measures of the signal “strength”. Each norm is a different way of measuring
signal strength. E.g., norm-2 is associated with the energy.

• The space of signals with a finite norm-p is called Lp space.
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3 SIMPLE OPERATIONS ON SIGNALS

3.5.3 Scalar Product and Norm for Continuous-time Signals

• Scalar product (or, inner product) between two continuous-time signals, x1(t) and x2(t):

⟨x1(t), x2(t)⟩ =

∫ +∞

−∞
x1(t)x

∗
2(t)dt

where x∗2(t) denotes the complex conjugate of x2(t) - this can be ignored if the signal only
has the real part.

• Norm-2 for the continuous-time signal, x(t):

||x(t)||2 =
√
⟨x(t), x(t)⟩ =

√∫ +∞

−∞
|x(t)|2dt =

(∫ ∞

−∞
|x(t)|2

) 1
2

• Norm-p for the continuous-time signal, x(t):

||x(t)||p =
(∫ +∞

−∞
|x(t)|pdt

) 1
p

; ||x(t)||∞ = max
n
|x(t)|

Question 3.1

The signal f1(t) is defined as

f1(t) =

{
|t|, |t| ≤ π

0, otherwise

and the signal f2(t) is defined as

f2(t) = −2 sin(2t)

The inner product between the signals f1(t) and f2(t) is:

(a) 3

(b) 1

(c) π

(d) 0

3.6 Characterising Similarity/Difference Between Signals
3.6.1 Measuring the Similarity

Normalizing the scalar product between two 2-dimensional vectors (A⃗ · B⃗) to the lengths of the
vectors (|A⃗| and |B⃗|) gives out the information of direction between two vectors,

A⃗ · B⃗ = |A⃗| · |B⃗| cos(ϕ) ⇒ cos(ϕ) =
A⃗ · B⃗
|A⃗| · |B⃗|

∈ [−1, 1]

• if cos(ϕ) = 1, A⃗ and B⃗ are parallel;

• if cos(ϕ) = −1, A⃗ and B⃗ are anti-parallel;

15



3 SIMPLE OPERATIONS ON SIGNALS

• if cos(ϕ) = 0, A⃗ and B⃗ are orthogonal.
A similar idea applies to measuring how similar two signals are - we normalise the scalar (inner)
product between two signals by norm-2 of the signals. This is called the normalised scalar
product between two signals1.

• For two continuous-time signals,

cos(ϕ) =
⟨x1(t), x2(t)⟩

||x1(t)||2 ||x2(t)||2
;

• for two discrete-time signals,

cos(ϕ) =
⟨x1[n], x2[n]⟩

||x1[n]||2 ||x2[n]||2
.

3.6.2 Cross-correlation Function and Normalized Cross-correlation Function

• In practical conditions, signals are commonly corrupted by noise.

Fig. 12: Two signals corrupted by noise, but they are correlated by shifting x2(t) with the time delay θ

• A possible estimate of the delay between the two signals is the time interval by which
we need to shift one of the signals so that it is maximally similar to the other, i.e.,
determining the shift, θ, at which two signals are in best temporal alignment.

Cross-correlation function, c(θ) The cross-correlation function is defined as the scalar prod-
uct between the signal x1(t) and the shifted signal x2(t− θ),

c(θ) = ⟨x1(t), x2(t− θ)⟩,
where our objective is finding the best value of θ that could maximise the cross-correlation
function, i.e., find the max similarity between two signals,

θbest = argmax
θ∈R

c(θ).

A special case of the cross-correlation is auto-correlation, where similarity is measured be-
tween x(t) and x(t− θ), i.e., to the signal itself,

a(θ) = ⟨x(t), x(t− θ)⟩,
which can be useful to say how quickly a signal is changing characteristics in some way (e.g.,
ultrasonic signal).

1signals are commonly in high dimensions, the angle between two signals are not easy to visualise, but the
computation carries the same idea as how we treat 2D vectors!

16



3 SIMPLE OPERATIONS ON SIGNALS

Normalized cross-correlation function, fc(θ) The normalised cross-correlation function is
defined as the normalised scalar product of the cross-correlation function,

fc(θ) =
⟨x1(t), x2(t− θ)⟩
||x1(t)||2 ||x2(t)||2

=

∫∞
−∞ x1(t)x2(t− θ)dt√∫ +∞

−∞ |x1(t)|2dt ·
√∫ +∞

−∞ |x2(t− θ)|2dt
.

Example 3.1 - Measure muscle fiber conduction velocity

By applying the cross-correlation function, we are able to find the time delay between
two EMG signals. By measuring the distance between two electrodes, we can calculate
the conduction velocity.

3.6.3 Measuring the Difference

• An alternativeway tomeasure the similarity between two signals is computing the strength
of their difference (i.e., norm).

• For example, using norm-2 to measure the strength of difference, we define the mean
squared error (MSE) between two signals:

MSE(θ) = ||x1(t)− x2(t− θ)||22

=

∫ +∞

−∞
|x1(t)− x2(t− θ)|2dt

where

– MSE(θ) is a function of the shift θ;
– the minimum value of θ best estimates the delay;
– MSE is the energy of the error signal.

17



4 FOURIER SERIES

4 Fourier Series

4.1 Orthonormal Functions
• Orthonormal functions has the following property:

⟨ϕi(t), ϕk(t)⟩ =

{
0, i ̸= k

1, i = k

where a set ofN signals {ϕi(t)}i=1...N with this property is referred to as an orthonormal
set of signals.
For example, the orthogonal unitary vectors (êx, êy, êz) defining the coordinate axes
(i, j, k) in a 3D Euclidean space.

• Any signals in a given space can be described by the linear combination of the basis
(orthonormal) signals,

x(t) =
N∑
i=1

aiϕi(t)

where ai are unknown complex or real numbers applied to each basis.

• The coefficients ai can be determined by projecting the signal into each function {ϕi(t)}i=1...N :

⟨x(t), ϕk(t)⟩ = ⟨
N∑
i=1

aiϕi(t), ϕk(t)⟩

=

∫ ∞

−∞

N∑
i=1

ai ϕi(t) ϕ
∗
k(t)dt

=
N∑
i=1

ai

∫ +∞

−∞
ϕi(t) ϕ

∗
k(t)dt

= ak

– Scalar product is a linear operator.
– The coefficients provide all the information in the signal: if we know ak, we know
the signal.

– If the signal x(t) belongs to a larger space, the projected signal will be an approxi-
mation of the original signal with minimum MSE.

Example 4.1 - Haar basis function

Given the signal:

ψ(t) =


1, 0 ≤ t < 1

2

−1, 1
2
< t ≤ 1

0, otherwise

The following signals define a set of orthonormal basis functions:

ψrk = ψ(2rt− k) for r = 0, 1, 2... and k = 0, 1, 2, ..., 2r − 1

18



4 FOURIER SERIES

t

t

t t t t

t

Fig. 13: Haar basis functions

4.2 Fourier Basis Functions
Fourier basis functions are:

ϕi(t) =
1√
T
ejωit =

1√
T
ej

2π·i
T

t =
1√
T

[
cos(

2π · i
T

t) + j sin(
2π · i
T

t)

]
︸ ︷︷ ︸

Euler’s formula

,

where t is defined in the time interval [0, T ], i ∈ Z is an integer, and j is the imaginary unit.

These functions have the following properties,

1. periodic, the period is a function of the fundamental period T , Ti = T/i;

2. the frequency of each Fourier basis function is an integer multiple of fundamental (base)
frequency 1

T
;

3. all basis functions are orthonormal to each other, when 0 ≤ t ≤ T :

• if i ̸= k, i.e., two distinguish basis functions,

⟨ϕi(t), ϕk(t)⟩ =
∫ T

0

ϕi(t) ϕ
∗
k(t)dt =

1

T

∫ T

0

ej
2πi
T

te−j 2π·k
T

tdt = 0,

• if i = k,

⟨ϕi(t), ϕk(t)⟩ =
∫ T

0

|ϕi(t)|2dt =
1

T

∫ T

0

dt = 1

4.3 Fourier Series
Fourier series can be used to represent any periodic signal with finite energy in a single period.

x(t) =
∞∑

k=−∞

ck e
j 2π·k

T
t with ck =

1

T

∫ +T
2

−T
2

x(t)e−j 2π·k
T

t

19



4 FOURIER SERIES

Derivation 4.1

If we assume:

x(t) =
+∞∑

i=−∞

ai ϕi(t)

=
1√
T

+∞∑
k=−∞

ak e
j 2π·k

T
t

with the coefficients ak :

ak = ⟨x(t), ϕk(t)⟩ =
∫ T

0

x(t) ϕ∗
k(t)dt

=
1√
T

∫ T

0

x(t) e−j 2π·k
T

tdt

An equivalent expression is the Fourier series

x(t) =
+∞∑

k=−∞

ck e
j 2π·k

T
t with ck =

1

T

∫ T

0

x(t)e−j 2π·k
T

tdt

• The infinite set of orthonormal functions of the Fourier series describes any periodic signal
with finite energy in a single period.

Fourier series with a finite number of terms:

x(t) ≈ xN(t) =
+N∑

k=−N

cke
j 2π·k

T
t

The error of approximation decreases as the number of terms increases,

EN(t) = x(t)− xN(t) = x(t)−
+N∑

k=−N

ck e
j 2π·k

T
t

lim
N→∞

∫ T

0

|EN(t)|2dt = 0, if
∫ T

0

|x(t)|2dt <∞

Fourier series converges as the number of terms increases:

20



4 FOURIER SERIES

Fig. 14: Example of convergence of the Fourier series of a periodic square wave. Number of
Fourier terms (N ) increased from 1 to 75.
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5 FOURIER TRANSFORM

5 Fourier Transform

5.1 From Fourier Series to Fourier Transform
Example 5.1

To find a representation of any finite energy signal, not necessarily periodic:
set the periodical of a period signal to infinity.

x(t) =

{
1, |t| < T1

0, T1 < |t| < T
2

T = 8T1

T = 16T1

T = 4T1

The Fourier series of the periodic signal
x(t) above is:

x(t) =
∞∑

k=−∞

cke
j 2π·k

T
t

with

ck =
1

T

∫ T1

−T1

x(t)e−j 2π·k
T

t

=
2 sin(kω0T1)

kω0T

=
1

T

2 sin(ωT1)
ω

∣∣∣∣
ω=kω0

where ω0 =
2π
T
is the frequency of the first harmonic.

Plot ck against ω. As T increases, the frequency becomes smaller, and the points
on the plot become closer.

Generalize the example above:
The signal x(t) defined in the interval t ∈ [−T1, T1]. We build the corresponding periodic
signal x̃(t), which equals to x(t) in one period. As T →∞, x̃(t)→ x(t).

... ...
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5 FOURIER TRANSFORM

x̃(t) =
∞∑

k=−∞

ck e
j 2π·k

T
t

with

ck =
1

T

∫ −T
2

T
2

x̃(t)e−j 2π·k
T

tdt

=
1

T

∫ +∞

−∞
x(t)e−jkω0tdt︸ ︷︷ ︸
X(kω0)

=
1

T
X(kω0)

x(t)→ X(ω) is known as Fourier transform.

x̃(t) =
∞∑

k=−∞

ck e
j 2π·k

T
t

=
∞∑

k=−∞

1

T
X(kω0)e

j 2π·k
T

t

=
1

2π

∞∑
k=−∞

X(kω0) e
jkω0t ω0

As T →∞, x̃(t)→ x(t), ω0 → 0:

x̃(t) = x(t) =
1

2π

∫ ∞

−∞
X(ω) ejωt dω (1)

X(ω)→ x(t) is known as inverse Fourier transform.

5.2 The Continuous-time Fourier Transform
Fourier transform:

X(ω) =

∫ +∞

−∞
x(t) e−jωtdt

Inverse Fourier transform:

x(t) =
1

2π

∫ ∞

−∞
X(ω) ejωt dω

• Fourier transform is a mathematical transformation employed to transform signals be-
tween the time domain and the frequency domain.

• Fourier transform is a reversible operation.

• Fourier transform is a linear transformation: it is defined by an integral
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5 FOURIER TRANSFORM

• For each value ofω, the Fourier transform is a complex number representing the projection
of the signal on the complex exponential function ejωt.

X(ω) = ⟨x(t), ejωt⟩

• The Fourier transform exists for signals in the L2 space. These signals can be ex-
pressed as the combination of functions ejωt.

Compare Fourier series and Fourier transform

Fourier series:

x(t) =
∞∑

k=−∞

ck e
j 2π·k

T
t with ck =

1

T

∫ T

0

x(t) e−j 2πk
T

t

Fourier transform:
x(t) =

1

2π

∫ +∞

−∞
X(ω) ejωt dω

X(ω) =

∫ +∞

−∞
x(t) e−jωt dt

The Fourier series represent periodic signals with discrete frequencies; the Fourier trans-
form represents non-periodic signals with continuous frequencies.

5.3 Properties of Fourier Transform
5.3.1 Linearity

FT {a1x1(t) + a2x2(t)} = a1X1(ω) + a2X2(ω)

Derivation 5.1

Given

X1(ω) =

∫ +∞

−∞
x1(t) e

−jωt dt and X2(ω) =

∫ +∞

−∞
x2(t) e

−jωt dt

FT {a1x1(t) + a2x2(t)} =
∫ +∞

−∞

(
a1x1(t) + a2x2(t)

)
e−jωt dt

= a1

∫ +∞

−∞
x1(t)e

−jωt dt+ a2

∫ +∞

−∞
x2(t)e

−jωt dt

= a1X1(ω) + a2X2(ω)

5.3.2 Time shifting

FT {x(t− t0)} = e−jωt0FT {x(t)} = e−jωt0 X(ω)
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5 FOURIER TRANSFORM

Derivation 5.2

FT {x(t− t0)} =
∫ +∞

−∞
x(t− t0) e−jωt dt

Let r = t− t0:

FT {x(t− t0)} =
∫ +∞

−∞
x(r) e−jω(r+t0) dr

=

∫ +∞

−∞
x(r) e−jωr e−jωt0dr

= e−jωt0

∫ +∞

−∞
x(r) e−jωrdr

Let r = t:

FT {x(t− t0)} = e−jωt0

∫ +∞

−∞
x(t) e−jωtdt︸ ︷︷ ︸

Fourier Transform

= e−jωt0FT {x(t)}
= e−jωt0 X(ω)

Question 5.1

If the Fourier transform of a signal, f(t), is given by the expression of F (ω), then the
Fourier transform of the signal 2f(t− 3) is given by

(a) 2F (3ω)

(b) 3F (ω/2)

(c) 4π ∗ F (ω), where * denotes convolution

(d) 2e−3jωF (ω)

5.3.3 Conjugation

FT {x∗(t)} = X∗(−ω)
if x(t) is real, X(−ω) = X∗(ω).

Derivation 5.3

The Fourier transform is:

X(ω) =

∫ +∞

−∞
x(t) e−jωt dt

Take the complex conjugate:

X∗(ω) =

∫ +∞

−∞
x∗(t) ejωt dt

25



5 FOURIER TRANSFORM

Change ω → −ω:

X∗(−ω) =
∫ +∞

−∞
x∗(t) e−jωt dt

= FT {x∗(t)}

5.3.4 Dual property

if x(t) FT←→ X(ω), then X(t)
FT←→ 2πx(−ω)

Example:

• δ(t) FT←→ 1, 1
FT←→ 2πδ(ω)2

• δ(t+ t0)
FT←→ ejωt0 , ejωt0

FT←→ 2πδ(ω − ω0)

Derivation 5.4

The Fourier transform is:

X(ω) =

∫ +∞

−∞
x(t) e−jωt dt

Change ω → t, to avoid confusion, also change t→ u:

X(t) =

∫ +∞

−∞
x(u) e−jtu du

The inverse Fourier transform of x(−ω) is:

FT −1{x(−ω)} = 1

2π

∫ +∞

−∞
x(−ω)ejωtdω

Change −ω → u,

FT −1{x(u)} = 1

2π

∫ +∞

−∞
x(u)e−jutdu

This yields the dual property:

X(t)
FT←→ 2πx(−ω)

5.3.5 Time scaling

FT {x(at)} = 1

|a|
X(

ω

a
)

a is a non-zero real number

From the above property,
FT {x(−t)} = X(−ω)

2Note that δ(−ω) = δ(ω)
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Derivation 5.5

Fourier transform of x(at) is:

FT {x(at)} =
∫ +∞

−∞
x(at)e−jωtdt

Replace at→ u, then t = u
a
, dt = 1

a
du

FT {x(u)} = 1

|a|

∫ +∞

−∞
x(u)e−j ω

a
udu

=
1

|a|
X(

ω

a
)

5.3.6 Parseval’s relation ∫ +∞

−∞
|x(t)|2dt = 1

2π

∫ +∞

−∞
|X(ω)|2dω

the function |X(ω)|2 is termed the energy-density spectrum of the signal.

Derivation 5.6

Start from the L.H.S:∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
x(t)x∗(t)dt

=

∫ +∞

−∞
x(t)

(
1

2π

∫ +∞

−∞
X∗(ω)e−jωtdω

)
dt

=
1

2π

∫ +∞

−∞
X∗(ω)

(∫ +∞

−∞
x(t)e−jωtdt

)
dω

=
1

2π

∫ +∞

−∞
X∗(ω)X(ω)dω

=
1

2π

∫ +∞

−∞
|X(ω)|2dω

Question 5.2

The Fourier transform X(ω) of the signal x(t) is

X(ω) =

{
1, −ωN ≤ ω ≤ ωN

0, otherwise

The energy of x(t) is equal to:

(a) ω2
N

(b) ωN

π

(c) ωN

(d) 2πωN

27



5 FOURIER TRANSFORM

5.3.7 Differentiation in time

FT
{
dx(t)
dt

}
= jωX(ω)

FT
{
dnx(t)
dtn

}
= (jω)nX(ω)

5.3.8 Convolution

FT {x(t) ∗ h(t)} = X(ω)H(ω)

Derivation 5.7

FT {x(t) ∗ h(t)} =
∫ +∞

−∞

∫ +∞

−∞
x(τ)h(t− τ)e−jωtdτdt

By the change of variables t− τ = α,

FT {x(t) ∗ h(t)} =
∫ +∞

−∞

∫ +∞

−∞
x(τ)h(α)e−jω(τ+α)dτdα

=

∫ +∞

−∞
x(τ)e−jωτdτ

∫ +∞

−∞
h(α)e−jωαdα

= X(ω)H(ω)

Convolution in the time domain is equivalent to multiplication in the Fourier domain.

5.4 More basic Fourier transforms
5.4.1 Impulse

x(t) = δ(t− T ) ↔ X(ω) = e−jωT

In particular, for T = 0, X(ω) = 1.

5.4.2 Complex exponential

x(t) = ejω0t ↔ X(ω) = 2πδ(ω − ω0)

x(t) = e−jω0t ↔ X(ω) = 2πδ(ω + ω0)

5.4.3 Cosine

x(t) = A cos(ω0t) ↔ X(ω) = Aπ[δ(ω − ω0) + δ(ω + ω0)]

5.4.4 Sine

x(t) = A sin(ω0t) ↔ X(ω) =
Aπ

j
[δ(ω − ω0)− δ(ω + ω0)]

Question 5.3

The Fourier transform of the signal y(t) = x(t) · cos(ω0t) is: (note: in all expressions
below X(ω) is the Fourier transform of x(t))

28



5 FOURIER TRANSFORM

(a) Y (ω) = 1
2
[X(ω − ω0)−X(ω + ω0)]

(b) Y (ω) = 1
2
X(ω − ω0) ·X(ω + ω0)

(c) Y (ω) = 1
2
X(ω − ω0)

(d) Y (ω) = 1
2
[X(ω − ω0) +X(ω + ω0)]

5.5 Example of application of properties of the Fourier transform

Example 5.2

I

vin vc

vR

For the circuit above, the input/output relation is characterized by the following differen-
tial equation:

vc +RC
dvc
dt

= vin

Taking the Fourier transform (using linearity property and differentiation in time prop-
erty):

Vc(ω) + jωRCVc(ω) = Vin(ω) → Vc(ω) =
1

1 + jωRC
Vin(ω)

• The Fourier transforms are coefficients indicating the weights of each complex
exponential signal e−jωt composing the signals.

• The above relation therefore tells us how the circuit processes the input signal by
changing the weights of the coefficients.

• In the frequency domain, the circuit acts as a factor that multiplies each coefficient
in a frequency-dependant way.

Let H(ω) = 1
1+jωRC

, this represents the frequency response of the circuit.

Vc(ω) = H(ω)Vin(ω)

Let the signal input vin(t) = ejω0t, when applying the dual property:

Vin(ω) = 2πδ(ω − ω0)

Therefore:

Vc(ω) =
2π

1 + jωRC
δ(ω − ω0) =

2π

1 + jω0RC
δ(ω − ω0) = H(ω0)2πδ(ω − ω0)
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5 FOURIER TRANSFORM

Take inverse Fourier transform:

vc(t) = H(ω0)e
−jω0t

Since H(ω0) is a complex number,

H(ω0) = |H(ω0)|︸ ︷︷ ︸
magnitude

· ej∠H(ω0)︸ ︷︷ ︸
phase

→ vc(t) = |H(ω0)|ej(ω0t+∠H(ω0))

The frequency response of the circuit changes the magnitude and the phase of the complex
exponential, NOT the frequency.

If the input is an impulse signal vin(t) = δ(t), the response of the circuit in the frequency
domain is:

Vc(ω) = H(ω)Vin(ω) = H(ω), since Vin(ω) = 1

And the response to the impulse in the time domain is:

FT −1{H(ω)} = 1

RC
e

t
RC u(t) =

1

τ
e

−t
τ u(t) = h(t)

From the example above, there is an input-output relation in the frequency domain.

Y (ω) = H(ω)X(ω)

5.5.1 Linear, Time-Invariant (LTI) Systems

Definition of LTI systems

Define a system operator T{·} where a mapping relation between the system input x(t)
and output y(t) exists: y(t) = T{x(t)}.

Linear If the system is linear and the input is scaled by a constant A, then the output
will be scaled by the same constant A.

Ay(t) = T{Ax(t)}

Time-invariant If the system is time-invariant and we delay the input by τ , then the
output will also be delayed by the same amount τ .

y(t− τ) = T{x(t− τ)}

Therefore, an LTI system also holds the property that

A0y(t) + A1y(t− τ) = T{A0x(t) + A1x(t− τ)}

For any continuous-time signals:

x(t) =

∫ +∞

−∞
x(τ)δ(t− τ)dτ
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5 FOURIER TRANSFORM

For any signal x(t):

y(t) = T{x(t)} = T

{∫ +∞

−∞
x(τ)δ(t− τ)dτ

}
=

∫ +∞

−∞
x(τ)T

{
δ(t− τ)

}
dτ

If h(t) = T{δ(τ)} (response of the system to the impulse response):

T{δ(t− τ)} = h(t− τ), then : y(t) =

∫ +∞

−∞
x(τ)h(t− τ)dτ = x(t) ∗ h(t)

The output of an LTI system is the convolution of the input with the impulse response, i.e., the
system is fully defined by the impulse response.

Therefore, in the frequency domain, the relation Y (ω) = H(ω)X(ω) holds for all LTI
systems. (Why? Convolution in the time domain is equivalent to the multiplication in the
Fourier domain.)

5.6 Magnitude and Phase Spectra
In general, X(ω) is a complex function of ω:

X(ω) = a(ω) + jb(ω) = |X(ω)|ej∠X(ω)

• |X(ω)| ismagnitude, it describes the basic frequency content of a signal, i.e. the relative
magnitudes of the complex exponentials that make up x(t).

• ∠X(ω) is phase angle, it determines the different look of signals, even if the magnitude
remains unchanged.

∠X(ω) = tan−1

[
ℑ{X(ω)}
ℜ{X(ω)}

]
+ π

[
1− sign(ℜ{X(ω)})

2

]

where sign(x) =


1, x > 0

0, x = 0

−1, x < 0

-5 0 5

-2

-1

0

1

2

Example 5.3

A ship encounters the superposition of three wave trains, each of which can be modelled
as a sinusoidal signal.

x(t) = 1 +
1

2
cos(2πt+ ϕ1) + cos(4πt+ ϕ2) +

2

3
cos(6πt+ ϕ3)

With fixed magnitudes for these sinusoids, the amplitude of their sum may be quite
small or very large, depending on the relative phases. The implications of phase for
the ship, therefore, are quite significant.
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5 FOURIER TRANSFORM

(Example adopted from Signals and Systems, 2nd Edition, P424)

Specifically, for the circuit example above:

|H(ω0)| =
1√

1 + ω2(RC)2
=

1√
1 + ( ω

ωc
)2

∠H(ω0) = − tan−1(ωRC) = − tan−1(
ω

ωc

)

5.7 Fourier Transform of Periodic Signals
If x(t) is a periodic signal:

FT {x(t)} = 2π
+∞∑

k=−∞

ckδ(ω − kω0)

where

ck =
1

T

∫ +T
2

−T
2

x(t)e−j 2πk
T

tdt

Derivation 5.8

Fourier series of a periodic signal x(t) with period T is:

x(t) =
+∞∑

k=−∞

cke
j 2π·k

T
t with ck =

1

T

∫ +T
2

−T
2

x(t)e−j 2π·k
T

tdt
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By applying linearity property:

X(ω) = FT
{ +∞∑

k=−∞

cke
j 2π·k

T
t

}

=
+∞∑

k=−∞

ck FT {ejkω0t}

= 2π
+∞∑

k=−∞

ckδ(ω − kω0)

5.7.1 Fourier transform of a train of impulses

x(t) =
+∞∑

n=−∞

δ(t− nT ) FT−−→ X(ω) =
2π

T

+∞∑
k=−∞

δ(ω − kω0)

where
ω0 =

2π

T

Derivation 5.9

x(t) =
+∞∑

n=−∞

δ(t− T )

From the definition above, x(t) is periodic with period T :

x(t) =
+∞∑

k=−∞

cke
j 2π·k

T
t with ck =

1

T

∫ +T
2

−T
2

δ(t)e−j 2π·k
T

tdt =
1

T

Thus:

X(ω) =
2π

T

+∞∑
n=−∞

δ(ω − kω0) with ω0 =
2π

T

Question 5.4

The Fourier transform of the time-domain signal x(t) =
[
e−tu(t)

]
·

+∞∑
n=−∞

δ(t − nT ) is:

(note: u(t) is the unit step function)

(a) X(ω) = 1
T

∑+∞
n=−∞

1
1+j(ω−n 2π

T
)

(b) X(ω) = 1
T

∑+∞
n=−∞ e−j(ω−n 2π

T
)

(c) X(ω) = 1
1+jω

· 1
T

∑+∞
n=−∞ δ(ω − n2π

T
)

(d) X(ω) = e−jω · 1
T

∑+∞
n=−∞ δ(ω − n2π

T
)
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6 SAMPLING THEOREM

6 Sampling Theorem
To obtain a discrete-time signal from a continuous-time signal, we need a C/D converter.

C/D 

conversion

Fig. 15: A C/D converter

Mathematically,
x[n] = xc(nT ) −∞ < n < +∞

where T is sampling period, fs = 1
T
is sampling frequency.

• In general, the C/D transformation cannot be inverted.

• Infinite continuous signals can reproduce a given sequence of samples,

An ideal C/D converter applies the T property so that the sampling can be done without losing
information.

6.1 Sampling Process
Impulse train modulator s(t) is:

s(t) =
+∞∑
−∞

δ(t− nT )

The sampled signal xs(t) is obtained by multiplying the impulse train modulator (Figure 16.b)
with the continuous-time signal xc(t) of interest (Figure 16.a):

xs(t) = xc(t) s(t)

=
+∞∑

n=−∞

xc(t)δ(t− nT )

=
+∞∑

n=−∞

xc(nT )δ(t− nT )

The sampled signal, xs(t), is still defined in the continuous-time domain, but it contains all in-
formation in the sampled discrete-time domain.
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6 SAMPLING THEOREM

(a)

(b)

Fig. 16: Spectrum of (a) the original continuous-time
signal pending to be sampled; (b) sampling signal
(delta train)

Apply the Fourier transform to xs(t):

Xs(ω) = FT {xc(t)} · FT {s(t)}

=
1

2π
Xc(ω) ∗ FT {s(t)}

=
1

T
Xc(ω) ∗

+∞∑
n=−∞

δ(ω − kωs)

=
1

T

+∞∑
n=−∞

Xc(ω − kωs)

where sampling frequency ωs = ω0 =
2π
T
.

For sampled signals: ωN is the signal bandwidth

• if ωs ≥ 2ωN , the replicas in the periodization do not overlap (Figure 17.a)

• if ωs < 2ωN , the replicas overlap, also known as aliasing3 (Figure 17.b).

(a)

(b)

Fig. 17: (a) Sampling without aliasing, ωs ≥ 2ωN ; (b) Sampling with aliasing, ωs < 2ωN

6.1.1 Nyquist-Shannon Sampling Theorem

Nyquist-Shannon sampling theorem states that: to retain the ability to reproduce (recon-
struct) the original signal, the minimum sampling frequency during signal sampling must
be at least twice its frequency.

Mathematically, let xc(t) be a band-limited signal withXc(ω) = 0, for |ω| ≥ ωN . Then xc(t) is
uniquely determined by its samples x[n] = xc(nT ), if

ωs =
2π

T
≥ 2ωN

where 2ωN is the minimal sampling rate and referred to as the Nyquist rate.

3“alias” is a Latin word, meaning “otherwise”, or “elsewhere”.
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6 SAMPLING THEOREM

Nyquist-Shannon sampling theorem provides the condition under which the C/D transformation
can be inverted without losing information, as shown in Figure 18.
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Fig. 18: Sampling of a continuous signal xc(t) = sin(200πt): (left to right, top to bottom) ωs = 0.5ωN ,
ωs = 1.25ωN , ωs = 2ωN , ωs = 4ωN . According to the Nyquist-Shannon sampling theorem, aliasing
occurs when ωs < 2ωN

Question 6.1

Consider the signal x1(t) = x(t) · cos(ω0t) with ω0 ̸= 0. The signal x(t) has bandwidth
ωN ≤ ω0. Which of the minimum sampling frequency fs,min to sample x1(t) without loss
of information?

(a) fs,min = 2(ω0 + ωN)

(b) fs,min = 2(ω0 − ωN)

(c) fs,min = 2ω0

(d) fs,min = 2ω0ωN

6.2 Reconstruction Process
Ideal low-pass filters can be used to reconstruct the signals.

╳

ideal low-pass filter

Fig. 19: A low-pass filter system for signal reconstruction
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6 SAMPLING THEOREM

1. Apply an ideal low-pass filter Hr(ω) to the sam-
pled signal, Xs(ω).

Xr(ω) = Xs(ω) ·Hr(ω)

This removes the redundant replicated sampled sig-
nal in the frequency domain, i.e., we only keep one
signal. This process is shown in Figure 21. Fig. 20: An ideal low-pass filter Hr(ω)

ideal low-pass filter

Fig. 21: Truncate the sample signal Xs(ω) with an ideal low-pass filter Hr(ω)

2. Due to the convolution property:

Xc(ω) = FT {xs(t) ∗ hr(t)}

3. Apply inverse Fourier transform:

xc(t) = xs(t) ∗ hr(t)

=
+∞∑

n=−∞

xc(nT )δ(t− nT ) ∗ hr(t)

=
+∞∑

n=−∞

xc(nT )hr(t− nT )

=
+∞∑

n=−∞

xc(nT )
sin(π(t− nT )/T )
π(t− nT )/T

with
hr(t) =

sin(πt/T )
πt/T

Fig. 22: Reconstruction
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