IMPERIAL

BIOE50010 — Programming 2

Computer Lab 9: Unit Tests

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

1 December, 2025

© Imperial College London

—[Revision Points (from weeks 8) |

Progress Check

)

How to use wrapper functions and decorators.
Understand the flow of execution.

How to use a class method in class. Clearly
differentiate between class attributes and instance
attributes.

How to use a static method and a property
decorator in class.

The assignment will be released on Friday 5
December, 2025.

There will be no additional tasks for week 10. Labs
will be running in a Q&A mode.

Week 9:
we are here -

)
———

Python Basics

7/

: Object & Class |

: Special Methods

Inheritance

Decorators

\——————————_

)

Algorithms |

2

[Testing

N—

2-3

Workflow with Unit Test

] provides setup & teardown for
[Test Fixature] cases/suites, e.g., set/reset timer

single input — *
output check { Test Case

("assertion”) W __________

executes everything and
reports results

|

' a collection of test
|

| cases
)

*» unittest allows users to customise the tests: either test a single case (test
case), or test a collection of cases (test suite).

Unit Test

To define the test cases using unittest

» Each test case should be defined as a method, with its name starting with the
keyword ‘test’.

= A series of assertion methods have been defined in unittest.TestCase
class — hence you need to use inheritance to access to these methods.

Example from test_point_pp.py Driver (test runner)
import unittest if name_ == " main_":
import point pp as point unittest.main()

class TestPointPP(unittest.TestCase): = You can define multiple test cases

def test add(self): within one test class.

result = point.add([10, 2],[1, 7]) = All test cases will run automatically
self.assertEqual(result, [11, 9]) unittest.main()

A Coursework Grader (1/)

class TestSim(unittest.TestCase):

Ve

def

setUpClass(cls):

def

Test Fixature

tearDownClass (cls):

def

def

setUp(self):
self.t0 = time.time ()

tearDown (self) :
self.dt = round(time.time() - self.t0,8)
student time[index].append(self.dt)

Testing whether the students have not altered the original

def

test catl 0 (self):

code

def

def

test catl 1 (sell): Test Cases

test cat?2 0 (self):

def

.timeout (20)
test cat6 0 (self):

def

.timeout (20)
test cat6 1 (self):

A Coursework Grader (2/)

def suite():
suite = unittest.TestSuite()
suite.addTest (TestSim('test catl 0 "))
suite.addTest (TestSim('test catl 1 ")) =
suite.addTest (TestSim('test cat2 0 ")) .1}9£;t f;llltEB
suite.addTest (TestSim('test cat6 0 "))

suite.addTest (TestSim('test cato 1 "))
return suite

def main():
runner = unittest.TextTestRunner (verbosity=2, descriptions=0)
runner.run(suite())

Test Runner

Your Task Today

Generate the test examples, and create test cases using module unittest,

perform tests to two functions eval win() and board_full() in the Tic Tac
Toe game.

To start...

» Read and study the example Python scripts from your Friday lecture.

* The functions to be tested are given out in TicTacToe.py on Blackboard. To
start, import them to your script.

» Refer the summaries of the unit test methods (given out the subsequent pages),
when necessary.

Appendix 1: Unit Test Methods

= Test fixature methods

Method Description

The method is called automatically before running each test method in a
test case class.

The method is called automatically after running each test method in a

setUp()

tearDown() test case class.

setUpClass() I;]Seerrgle;]gd is called automatically before running the tests in a test

tearDownClass () Ilr;zsr.nethod is called automatically after running the tests in a test case

C setUpClass() > setUp() > setUp() h
» assert... » assert... —| tearDownClass()

S — tearDown() > tearDown())

Appendix 1: Unit Test Methods

= Test assertion methods

unittest method Checks that... unittest method Checks that...
assertEqual(a,b) a==2>b assertIsNone(x) X is None
assertNotEqual(a,b) al=Db assertIsNotNone(x) X is not None
assertTrue(x) bool(x) is True assertIn(a, b) ain b
assertFalse(x) bool(x) is False assertNotIn(a,b) a not in b
assertIs(a,b) ais b assertIsInstance(a,b) isinstance(a, b)
assertIs(a,b) ais b assertNotIsInstance(a,b) not isinstance(a, b)
assertIsNot(a,b) a is not b

	Slide 1: BIOE50010 – Programming 2
	Slide 2: Progress Check
	Slide 3: Workflow with Unit Test
	Slide 4: Unit Test
	Slide 5: A Coursework Grader (1/)
	Slide 6: A Coursework Grader (2/)
	Slide 7: Your Task Today
	Slide 8: Appendix 1: Unit Test Methods
	Slide 9: Appendix 1: Unit Test Methods
	Slide 10: That’s it for now. You can now proceed to the Lab 9 exercises.
	Slide 11: Please log your attendance and provide us feedback!

