IMPERIAL

BIOE50010 — Programming 2

Computer Lab 8: Advanced Function & Class Mechanics

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

23 November, 2025

© Imperial College London

Feeback on Week 7 - find ()

1 2 3 4 5 6 7 8 9

sequence | A| Ic| |G| [T| |A| [6] |c| |6] |T

segment C G T > =as

* There are many possible ways to structure the find() algorithm:
» Character-to-character comparison: uses 2 nested for-loops, slow.
» List-to-list comparison: uses 1 for-loop to slice the sequence, faster.

= List-to-list comparison with an initial-character check: Avoids unnecessary slicing
by checking the first character first, fastest.

= String-to-string comparisons should work — strings are iterable.

—[Revision Points (from weeks 7) |

Progress Check

)

How to implement a simple algorithm, measure
your code efficiency, and perform optimization to
improve its efficiency.

Questions outside the classroom? m discussion

Week 8:
we are here -

)
N——

Python Basics

: Object & Class |

:Special Methods:

Decorators

7/

~

" - - . S S S e e .

2-3

https://edstem.org/us/courses/87600/discussion

Function Decorators

= A decorator is a special type of function that is used to modify the behaviour of
another function.

» Wrapper functions

» Static method (in OOP)

» Class method (in OOP)

* Property method and setter method (in OOP)

= When a function (or, method) is decorated, we place an @ symbol directly above

a function.
@myDecorator

def myFunction():

* |t means: myFunction = myDecorator(myFunction)

* In this case, a function (myFunction) is passed into another function (myDecorator)
as an argument.

Wrapper Functions

» Rule 1: a function can be passed into another function as an argument.
= Rule 2: a function can be defined in another function.

Example from debug_timer.py 1 _ .
4 def debug_timer(some function): original_ function is called with the

arguments "happy’, 1.

1

/ def wrapper_function(*args, **kwargs): <«

;" t0 = time.time() L @
some_function(*args, **kwargs) @ i Toriginal_function is decorated with
@ dt = time.time() - to '/ | @debug_timer. When debug_timer
; print(f'Elapsed time: {dt} seconds’) / / invoked from original_ function,
'.‘ return wrapper function 4 some_function = original_ function
\ @debug_ti 3 . :
4 @de ug_timer .) CDdebug_tlmer' calls wrapper_function
7 def original function(datal, data2):)
@ . , : . : by revoking the return statement: so
print(f'running fcn with {datal} and {data2}') . :
: now, the argument, some_function, will
\ be executed, as well as being timed.

‘-original function('happy', 1)

* See weekly coding example here.

https://colab.research.google.com/drive/1gZ_qy2r0R5SO5JsrDGJUrEhQgc4RLgmU?usp=sharing

@staticmethod

» Sometimes we want a method (in OOP)
that does not use any instance data.
= j.e., no need access to self.

= Such methods are useful for:

= Utility functions.
= Operations that don’t use object state.

» There are two ways to define them:

» Aregular function defined outside the
class.

» A@staticmethod defined inside the
class.
Example: check if someone’s age > 18.
Using a regular function or a static
method works the same way functionally.

* See weekly coding example here.

Example 1: using a standalone function

class Person:
def init (self, age):
self.age = age;
self.adult = is adult(age);

def is_adult(age):
return age > 18;

Example 2: using a static method

class Person:
def init (self, age):
self.age = age;
self.adult = self.is adult(age);

@staticmethod
def is_adult(age):
return age > 18;

https://colab.research.google.com/drive/1gZ_qy2r0R5SO5JsrDGJUrEhQgc4RLgmU?usp=sharing

@classmethod

= |[n OOP, we are allowed to instantiate a
new object in two ways:

1. Directly calling the class constructor.

2. Using a class method (@classmethod)
method as an alternative constructor.

Example: calculating someone’s age
from his/her birth year:

O Call the class method using the birth year

0 The method calculates the age

O The calculated age is passed to the constructor
O The constructor assigns the value to self.age

* See weekly coding example here.

Example

from datetime import date

class Person:
def init (self, age = 9):
self.age = age

@classmethod
def fromBirthYear(cls, year):
return cls(date.today().year - year)

Driver code

pl = Person(20) N
rint(pl.age

g (p1.age) The same

p2 = Person.fromBirthYear(2005) effects!

print(p2.age) J

https://colab.research.google.com/drive/1gZ_qy2r0R5SO5JsrDGJUrEhQgc4RLgmU?usp=sharing

Your Tasks Today

Four short tasks combining use of procedural programming and object-
oriented programming:

= Computer animation in Command Prompt (Windows PCs) / Terminal (Mac).
» Use wrapper functions to time your code.

» Decorators in classes: static method, class method, and property function.

To start...

= Study the syntax using the Python snippets from your Friday lecture slides and weekly
example notebook.

» Read the sample output from the lab sheet carefully.

= Revise the Command Prompt / Terminal commands listed in the Lab 2 sheet and slides.

8

	BIOE50010 – Programming 2
	Feeback on Week 7 - find()
	Progress Check
	Function Decorators
	Wrapper Functions
	@staticmethod
	@classmethod
	Your Tasks Today

