

BIOE40002 – Computer Fundamentals and Programming 1

Part I – Digital Logics, Lab 5

Binghuan Webster Li | Department of Bioengineering

binghuan.li19@imperial.ac.uk

February 17, 2022

Meme of the day...

Imperial College London

When your program is a complete mess, but it does it's job.

- Recap (~ 10 mins)
 - Integration of the 4-bit addition and subtraction machine
 - Selectors and multiplexers
- Lab exercises 11 and 12

4-bit addition and subtraction machine

- *Q*: can we integrate addition and subtraction functions into *one* machine?
- Rationale: a condition to determine whether inverting the input bits is required!

$$C_{in} = 0$$
, addition

AND gates as selectors

Enable	In	Out
0	0	0
0	1	О
1	0	o
1	1	1

- When *Enable* is set to 1, output follows input
- When *Enable* is set to 0, output would remain 0 regardless of the value of input
- Selector

2 × 1 multiplexer

•	When Selec	<i>ct</i> is set to 1,	, output follows	sinput
	channel 1 (•	•

- When *Select* is set to 0, output follows input channel 0 (*In0*)
- 2 × 1 multiplexer

-	Out	Select	In 1	In 0
-	0	0	0	0
In 0	0	0	1	0
	1	0	0	1
	1	0	1	1
In 1	0	1	0	0
	1	1	1	0
	0	1	0	1
	1	1	1	1

4 × 1 multiplexer

- 2 selector terminals *So*, *S1*
- Select the signal from *I0*, *I1*, *I2*, *I3*

• E.g., S0=1, S1=1; O=I3

It is your turn to design a 8×1 multiplexer with two 4×1 multiplexers and one 2×1 multiplexer!

Questions?

That's it for now.

You can now proceed to the Exercise 10 and 11.

Task 11 – design a 4-bit add-subtraction circuit London

- By setting $C_{in} = 0$, the circuit performs addition
- By setting $C_{in} = 1$, the circuit performs subtraction

Task 12 – Design an 8x1 multiplexer

