

BIOE40002 – Computer Fundamentals and Programming 1

Part I – Digital Logics, Lab 4

Binghuan Webster Li | Department of Bioengineering

binghuan.li19@imperial.ac.uk

February 10, 2022

Meme of the day...

Imperial College London

when you begin to explain what a clock is

- Recap (~ 10 mins)
 - Integration of the 4-bit addition and subtraction machine
- Lab exercises 10 and 11

Schedule from next week onwards...

- Week 6 & 7(reading week) digital logic
- Week 8 to 11 programming

4-bit addition and subtraction machine

Imperial College London

• Q: can we integrate addition and subtraction functions into one machine?

4-bit addition machine

• performs addition A+B

4-bit subtraction machine

- invert each bit of input B
- performs subtraction A+(-B)

4-bit addition and subtraction machine

- **Q**: can we integrate addition and subtraction functions into *one* machine?
- *Rationale*: a condition to determine whether inverting the input bits is required!

$$C_{in} = 0$$
, addition

C_{in} = 1, subtraction

Questions?

That's it for now.

You can now proceed to the Exercise 10 and 11.

Task 10 - design a 4-bit subtraction circuit

• The 4-bit subtraction circuit is obtained by inverting four B inputs.

• Verification:

	Name	Value at 0 ps
<u> </u>	> A	B 1101
<u> </u>	> B	B 0010
in_	Cin	B 0
out	Cout	B 1
*	> S2	B 1010

Task 11 – design a 4-bit add-subtraction circuit London

- By setting $C_{in} = 0$, the circuit performs addition
- By setting $C_{in} = 1$, the circuit performs subtraction