
Introduction to Arduino Programming
Binghuan W Li

binghuan.li19@imperial.ac.uk
Dr Christopher Rowlands

c.rowlands@imperial.ac.uk

March 23, 2022

1 Introduction
Today, we will delve a bit into Arduino programming. Originating from Italy, Arduino is an open-source1 electronicsprototyping platform based on flexible, easy-to-use hardware and software. It builds on the idea of using less expen-
sive devices for controlling interactive electronic projects, supporting rapid prototyping of microcontroller hardwareby electronic designers and students. Typically, an Arduino (Nano, Uno) consists a +3.3V power rail, a +5V powerrail and two ground(GND) terminals, which can be used to power up most small pieces of external hardware (say,sensors or motors). It also has multiple analogue(A) and digital (D) input/output terminals, which can efficientlycontrol the I/O of your device using signals that you can program youself.
A detailed pinout of an Arduino Uno is shown below, but more details can be found in the datasheet, availableat here.

Figure 1: Arduino Uno pinouts. Adopted from https://content.arduino.cc/assets/Pinout-UNOrev3_latest.png
1The schematics of every board are available to view. You are free to make you own Arduino using standalone components - but you stillneed to buy them!

1

mailto:binghuan.li19@imperial.ac.uk
mailto:c.rowlands@imperial.ac.uk
https://docs.arduino.cc/static/a106feb536867b39ee791cbc8853b33e/A000066-datasheet.pdf
https://content.arduino.cc/assets/Pinout-UNOrev3_latest.png

2

2 From Blink to Arduino Programming Syntax

2.1 Arduino IDE
So, how can you communicate with your Arduino board? Luckily, a ‘ferry boat’, the Arduino IDE, is already there foryou, to help you bridge the gap between your computer and the board. Arduino IDE is an integrated developmentenvironment introduced by Arduino official, multiple versions are available to download for both PC and Mac users.Of course, you are required to write your program in a syntax that is specially designed for Arduino - your Arduinocode, or sketches, are written in a variant of C++ called the Arduino Programming Language.
Once you have installed Arduino IDE successfully on your PC/Mac, the following graphical user interface shouldbe available to you.

Figure 2: Arduino IDE user interface
1. Verify: by clicking this button, Arduino IDE checks the code for errors, then compiles it, ready for uploadingto the Arduino. Click this first.
2. Upload: when you click this button, Arduino IDE uploads the code to the connected Arduino board.
3. void setup: in an Arduino program, statements within this function will only be executed once. Therefore,this function block is commonly used to set up system parameters, etc.
4. void loop: in an Arduino program, statements within this function will be executed periodically, similar to ifthe statements were placed in a while True loop.
5. Serial monitor: similar to the console in Python IDLE’s IDE, the serial monitor is the ‘tether’ between thecomputer and your Arduino. It allows you send and receive text messages, handy for debugging and alsocontrolling the Arduino from a keyboard. Unlike the console however, your program needs to be programmedto know how to respond to your text messages!
6. Serial plotter: similar to the oscilloscopes you’ve used in the electronics labs, the serial plotter is commonlyused to display the data read from the Arduino board. It receives the data (e.g. temperature, humidity) fromthe hardware sensors and plots the data as one or more waveforms.

https://www.arduino.cc/en/software

3

7. Board/processor/port selection: these options are used to select board model, microcontrollers (by default,ATMega328P) and communication ports in your Arduino IDE. Make sure they match the board you connectedto your computer. Check these settings every time you connect your Arduino board to your computer.
2.2 Blink!
Similar to print("Hello, world!") in Python and other programming languages, Blink is a very basic Arduinosketch for testing purposes, and to get new learners quickly familiarized with Arduino programming.
This program blinks the on-board light-emitting diode (LED), as well as the LED that is externally connected todigital output pin 13 (if there is one!), with a fixed period of one blink every 2 seconds.

1 /*
Blink3 Turns on an LED on for one second , then off for one second , repeatedly.

5 Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo , it is attached to digital pin 13. If you’re unsure what7 pin the on-board LED is connected to on your Arduino model , check
the documentation at http :// arduino.cc9
This example code is in the public domain.11
modified 8 May 201413 by Scott Fitzgerald

*/15
17 // the setup function runs once when you press reset or power the board

void setup() {19 // initialize digital pin 13 as an output.
pinMode (13, OUTPUT);21 }

23 // the loop function runs over and over again forever
void loop() {25 digitalWrite (13, HIGH); // turn the LED on (HIGH is the voltage level)

delay (1000); // wait for a second27 digitalWrite (13, LOW); // turn the LED off by making the voltage LOW
delay (1000); // wait for a second29 }

Listing 1: Blink.ino
The corresponding wiring schematic is shown below. The resistor, R = 220Ω.

Figure 3: Schematic for Blink
A detailed code breakdown:
1. void setup() - setup is the name of the function which runs once, whenever the board is turned

4

on (or reset). void means it returns no varaiables, and the empty brackets mean that it takes noarguments. Statements within this function will only be executed once.
In C++/C-like programming languages, when returning a value from a function, you are required totell your compiler what data type that value is (such as int, char, float, or any other data type). Inthis case, the return type is void, which just tells the compiler that there is no return value.

2. pinMode(13, OUTPUT) - this command initializes pin 13 on your Arduino board as an output pin.
The general format of this command is pinMode(pin, mode); it takes two arguments, whichspecify the mode (OUTPUT or INPUT) of a specific pin.

3. void loop() - similar to void setup(), the function loop does not return any value. Statements withinthis function will be executed periodically while the board is active.
4. digitalWrite(13, HIGH) - this command controls your Arduino board, telling it to turn the LED onby supplying a +5V voltage (Vcc) to pin 13 (and thus to the anode of your LED). The same is true for

digitalWrite(13, LOW), which will turn off the LED, taking the voltage supply back to 0V.
5. delay(1000) - this command tells the board to do nothing for 1000 milliseconds, or 1 second. It issimilar to the time.sleep function in Python.

Other general comments on coding syntax:
6. Semicolons - In Arduino sketches or C++/C-like programming languages, a semicolon ; is requiredto end your statements. Usage of Semicolons in C will remove ambiguity and confusion while lookingat the code. However, this is optional in Python.
7. Comments - In Arduino sketches or C++/C-like programming languages, multiline comments areinserted between /*...*/ while single line comments are inserted after double backslashes //. Com-ments will be ignored by the compiler.

2.3 Variables and Arithmetic Expressions
In this section, we are going to see the different data types and operators that you may find useful in your sketches.The following syntax can also be applied to other C-like languages, including C and C++.
2.3.1 Variable declaration

In all C-like programming languages, variables must be declared before they are used. A declaration consists ofa type name and variable(s). You can assign a value to the variable right after you declare it. For example:
1 int my_variable_1 = 25; \\ declare an integer type variable , assign a value to it.

char greeting [6] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’}; \\ strings are terminate by \0.

Primary data types include int (integer, 16 bits), float(floating point, 32 bits), char(character, 8 bits), double(doubleprecision floating point) etc.
Moreover, modifiers - signed, unsigned, short, and long are used to modify default properties of primary datatypes. For example, by applying unsigned modifier to the int type, the variable can only store values greater thanor equal to zero.
A clear and neat summary of C data types in a table can be found here. A ‘friendly’ explanation to C data typesand modifiers can be found here.
2.3.2 Arithmetic expressions

A large set of operators are available in the Arduino Programming Language. Here are a few quick cheat sheetsyou can use in your Arduino programming.

https://en.wikipedia.org/wiki/C_data_types
https://www.journaldev.com/26779/data-types-and-modifiers-in-c

5

Operator Meaning operator Meaning+ addition - subtraction* multiplication / division% reminder after division
Table 1: Arithmetic operators

Operator Meaning operator Meaning= a=b += a+=b equivalent to a=a+b-= a-=b equivalent to a=a-b *= a*=b equivalent to a=a*b/= a/=b equivalent to a=a/b %= a%=b equivalent to a=a%b
Table 2: Assignment operators

Operator Meaning operator Meaning== equal to, e.g. 5==3⇒0 > greater than< smaller than != not equal to>= greater than or equal to <= less than or equal to
Table 3: Relational operators

Operator Meaning&& Logical AND. True only if all operands are true|| Logical OR. True only if either one operand is true! Logical NOT. True only if the operand is 0
Table 4: Logical operators

2.4 Control flow
In this section, we will look at the syntax of common control flow constructs - for loops, if...else... statementsand while loops.
While we are only covering these three control flow statements here, note that there are more useful statementssupported by C-like languages: do...while loops, switch case, break and continue statements.
2.4.1 for loop

for loops in Arduino sketches are following the structure below- three arguments are given in the order of initial condition-finalcondition-action, as shown in the parenthesis following the keyword
for.
A quick example is for(int i=0, i<=5, i++).
for (initial_condition , final_condition , action){2 statement_1;

statement_2;4 ...
}

Listing 2: for loop Figure 4: for loop
Note the differences from Python’s for loop syntax : There is no syntactic whitespace. C-like languages placethe code within the loop inside of two curly brackets . It is however very good practice to still indent the statementsin the loop, so you can read the code more easily. Don’t forget you still need a semicolon at the end of eachstatement in the loop!

https://www.programiz.com/c-programming/c-do-while-loops
https://www.programiz.com/c-programming/c-switch-case-statement
https://www.programiz.com/c-programming/c-break-continue-statement

6

2.4.2 if...else...statements
if...else-if...else... statements in Arduino sketches share avery similar syntax to Python, except elif in Python is written as
else if in an Arduino sketch.

1 if (condition_1){
statement_block_1;3 }

else if (condition_2){5 statement_block_2;
}7 else{

statement_block_3;9 }

Listing 3: if else statements Figure 5: if... else... statements

2.4.3 while loop

while loops in Arduino sketches also share a similar syntax to thosein Python. In a while loop, a condition check is given in the parenthe-ses, statements are expressed between the curly brackets. The whileloop will execute so long as the condition check evaluates to true;the check will be performed each time the loop repeats, so make sureit will evaluate to false at some point or your program will get stuck!
1 while (true_condition){

statement_1;3 statement_2;
...5 statement_increment_to_true_condition;

}

Listing 4: while loop Figure 6: while loop

2.5 Functions
Like Python, Arduino Programming Language (and, in fact, any C-like language) allows you to define functions. Afunction definition in an Arduino sketch follows the structure below:
return_type function_name (arg1 , arg2 , ..., argN) {2 statement_1;

statement_2;4 ...
statement_N;6 return value;

}

All functions must have a function return type that is specified prior to the function name. This type can be int,
float, char* 2 or simply void (return nothing).
The function name and arguments come after the return type, and at this point there is fundamentally nothingdifferent from Python’s function definition. As before however, there is no syntactic white space; all statementsshould be placed in between the curly brackets. Although indentation is not compulsory in C-like languages, theyimprove your code readability - you should definitely use it.
A return statement is used to return values/variables from the function. It is optional. Sometimes, even thereis no need to return any variables from the function, people use return 0 to indicate that the function executedcorrectly, and use non-zero returns (e.g, return -1) to indicate errors.

2The asterisk declares a pointer. The pointer stores the starting memory location of the variable it is next to, in this case a string.

7

3 Serial communication at a glance
Well, after going through some basic syntax which will be useful in Arduino sketches (ah, finally!), you are now ashining expert in Arduino coding! Wait... you may ask, are there any specific features for Arduino only, but not forother C-like languages? The answer is "yes", and one of the most important features is serial communication.
Serial communication is used for data transfer between the Arduino board and your device (let us say, your PC),by sending bite-sized data sequentially over a communication port (COM). This is how your compiled sketch canbe uploaded and executed on the board, and is also how the data collected from an external device (let us say, atemperature sensor), can be sent back to your PC.

Figure 7: Serial communication. Adopted from https://www.ladyada.net/learn/arduino/lesson4.html
Look carefully to your Arduino board, there are two helpful built-in LEDs, labeled with RX and TX, that will blinkwhen the Arduino is receiving data (RX) as well as transmitting data (TX). You can use them whenever you arecommunicating with the board, to check that everything is working properly.
Now, we are going to look at five useful functions which are related to serial communication. However, this isbut a small selection of the functions available; more can be found here.
3.1 Serial.begin()

The first function related to the serial communication is Serial.begin(speed). This function takes one compulsoryargument, speed, which sets the data rate (baud, or bits per second) for serial data transmission.
By convention, we take the data transmission rate to 9600 baud (i.e. Serial.begin(9600)), as this is the de-fault rate for the Arduino. You should be aware that your Arduino (and other devices) can communicate at differentspeeds, so make sure you check the manual for whatever you are trying to communicate with.
DO include this command in your void setup() function, as most likely you do not want this command to beexecuted periodically!
3.2 Serial.print()

Similar to Python, the print function is particularly useful to print data to a particular output device. Unlike in yourPython code however, we don’t have a console to print to, so instead we print to the serial port. This function takes1 compulsory argument. For example, Serial.print(‘Hello, world!’); gives ‘Hello, world!’.
The second argument is optional, it is used to specify the base of the value to print. For example, Serial.print(78,
BIN); gives ‘1001110’, as it converts a decimal number into the binary form.

https://en.wikipedia.org/wiki/Serial_communication
https://www.ladyada.net/learn/arduino/lesson4.html
https://www.arduino.cc/reference/en/language/functions/communication/serial/

8

3.3 Serial.println()

This function is almost identical to Serial.print(), but every time we call this function, it will start with printingwith a new line.
How does your program achieve this function...? Basically, an escape sequence, \n, will be appended to yourstring, which tells your program to start a new line. You may remember this from the ASCII and Unicode slides inthe first lecture of the course.
3.4 Serial.read()

The function Serial.read() is used for reading incoming serial data. It does not take any arguments, but returnsthe first byte of incoming serial data with an int data type. You should notice that this helps explain why in C (andeven in Python), variables have a type. The compiler or interpreter knows how to interpret the sequence of 1s and0s so that they represent what the programmer wants them to represent (a number, or a string, or a boolean forexample). Here, we don’t know what the data type returned from the serial port is, so we just guess that it is an
int. We might be wrong!
Usually, the use of Serial.read() is accompanied with another function Serial.available(), which returns howmany bytes of data have arrived in the serial buffer, and therefore are ready to be read. Make sure you don’t waittoo long before reading from the buffer, as it can overflow and you will lose data!

1 void loop() {
if (Serial.available () > 0) {3 int incomingByte = Serial.read();
}5 }

3.5 Serial.write()

The final function we are going to analyse is Serial.write(). It writes binary data to the serial port. If the argumentis a value, the data will be sent as a byte; if the argument is a string, the it will be sent as a series of bytes.

9

4 Analog? Digital?
In subsection 2.2, we had a brief exposure to Arduino digital pins as well as the digital output function digitalWrite().In this section, we will delve a bit deeper into the digital/analog output/input functions on the Arduino boards. First,to use the functions below, remember to initialize pinMode() in void setup()!
4.1 Analog signals - analogRead and analogWrite

Arduinos can both input (read) and output (write) analog signals. To read an input analog signal, the function
analogRead(pin) is useful; it tells the Arduino’s built-in analog-to-digital converter (ADC) to convert an analogsignal into a digital value and return an integer between 0 and 1023. This digital value is is proportional to that ofa reference voltage, either 5V or 3.3V. You should look up the specifications for the board you are using to knowwhat the reference voltage is.
To write an analog signal, although no digital-to-analog converters (DACs) are pre-built into Arduino Uno or Ar-duino Nano3, Arduinos can pulse-width modulate (PWM) a digital signal to achieve an analog output, throughthe function analogWrite(pin, value). This function takes two arguments - the first argument specifies the out-put pin, the second argument is an integer value between 0 to 255 that is proportional to the duty cycle of the signal.
To illustrate how PWM works in an Arduino board, refer to Figure 8. PWM works by very rapidly switching be-tween two states (on and off), spending more time in one state than the other. The signal is then low-pass filteredto get an ’average’ value, which will be somewhere between Von and Voff. When value = 0, the signal is alwaysOFF; when value = 255, the signal is always ON. By altering the value, a digital signal can be used to ‘imitate’ ananalog signal. To determine the value based on your desired voltage, the following equation is used:

value = 51× u

where u is your desired analog voltage.

Figure 8: Pulse-width modulation. Adopted from https://www.arduino.cc/en/Tutorial/Foundations/PWM
Note: NOT all pins support PWM! On most Arduino boards, the PWM function is available on pins 3, 5, 6, 9, 10,and 11. The frequency of the PWM signal on most pins is approximately 490 Hz. On the Uno and similar boards,pins 5 and 6 have a frequency of approximately 980 Hz.

3If you need a DAC you can either use a separate DAC chip, or the Arduino Due has two built in.

https://www.arduino.cc/en/Tutorial/Foundations/PWM

10

4.2 Digital signals
Analogous to analogRead(pin) and analogWrite(pin, value), there are equivalent functions for digital signals,
digitalRead(pin) and digitalWrite(pin, value). These perform input and output for digital signals, respec-tively. There is a minor difference however - the second argument of the function digitalWrite(pin, value) canonly take two expressions: ‘HIGH’ or ‘LOW’.

11

Appendix A From sketches to actions - compilation
When you click the ‘upload’ button in your Arduino IDE, an sequence of important events have to happen to passyour sketch to your Arduino board. These events are complicated, but to break them down into a manageableoutline, below is a very brief description. Nevertheless, a full, comprehensive explanation can be found here.
1. Pre-processing: during this stage, your .ino sketches will be processed into a C++ program (.cpp). Thisstep is unique in Arduino Programming Language.
2. Compilation: at this stage, the C++ program that is obtained from the last step will be compiled into machine-readable instructions by the avr-gcc compiler.
To take a closer look the compilation process: first, an object file (.o) is generated. Your compiler will link4 thisobject file to the standard Arduino libraries. The standard Arduino libraries enable us to use those Arduinobuilt-in functions, such as Serial.begin() and digitalWrite().
Meanwhile, your compiler will try to locate the dependencies (say, external libraries, .h files) if you haveadded any #include statements in your sketch. This process is known as separate compilation.

3. Uploading: the final output of the compilation is a .hex file. The .hex file is uploaded to the board by auploader/downloader utility, Avrdude, over the USB or serial connection.

Figure 9: Arduino pre-processing, compilation and uploading flowchart
C/C++ language shares a very similar compilation process to the one shown above!

4Linking is when the ’linker’ finds all the extra code from the libraries and functions you call in your code, and puts the actual code for thosefunctions into your program

https://arduino.github.io/arduino-cli/0.21/sketch-build-process/

12

Appendix B Pointers
“Wait what...? Pointers? Point to where?", you may ask. The best answer to this question (ever!) is the formaldefinition: A pointer is a variable that contains the address of a variable. In other words, instead of storing anumber or a character, a pointer stores a memory address of another variable.
Wierd? It should be - this concept isn’t found in Python, so you haven’t had to work with it before. Let us begin witha simple picture of how memory of your program is organised. A typical machine has an array of consecutivelynumbered or addressed memory cells. Let us say,

• one cell can hold the memory of one byte - that is, the size of a char variable;
• a pair of one-byte cells can be treated as a short int variable;
• two pairs of adjacent one-byte cells represent a long int type variable.

A pointer is a group(two or four) of memory cells that can hold an address.

Figure 10: Memory location and pointer
If c is a char type variable, p is a pointer that points to the memory location of c, the situation can be presented inFigure 10.
In C and C-like languages, two specific operators, & and *, are used to reference and dereference a pointer.
1. The operator & gives the address of an object.
1 p = &c;

which assigns the address of c to the variable p, say, “p points to c”.
2. The operator * dereferences the address. When applied to a pointer, it accesses the object the pointer pointsto.
1 int *ptr; // declare a pointer

int a = 1; // declare a int variable and assign 1 to it3 ptr = &a; // assign the address of ‘a’ to ‘ptr’
printf("%d", *ptr); // deference the pointer , access to ‘a’

The last command printf("%d", *ptr) prints out the value of the variable a by derefencing the pointer ptr.Note that, %d in the function printf is a format specifier in C language, it just means the data printed is aninteger.
Why use pointers? Firstly, pointers allow functions to change the specific variables sent to them - not copies ofthe values, but the original memory locations of the variables themselves. This is useful when you are working ona large dataset, for example; you may not have enough memory to make a copy every time you pass the data to afunction, but with a pointer, you can work on the data itself, without needing to copy it. Secondly, pointers are usedto implement arrays. Especially when working with dynamic memory allocation. Thirdly, pointers make code faster- copying large datasets every time you call a function takes time. And finally, pointers are used in object-orientedprogramming.
Why not use pointers? Pointers allow you to directly access memory addresses, which makes them very dan-
gerous. If you do not use your pointers correctly you can access garbage data, overwrite important parts of yourdata or your program itself, or you can leave the pointers dangling. Another product of incorrect usage may bememory leaks.

https://www.geeksforgeeks.org/format-specifiers-in-c/
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Memory_leak

13

Appendix C (A warm-hearted) Checklist
This is a general checklist generated by Mr Paschal Egan, NOT specifically related to the questions that YOU haveencountered. Adapted from Appendix D, Arduino First-year Task Sheet (2021).
1. Have you set in tools correct Arduino and com port (highest) – a particular problem with shared computers itis saves last user’s set up.
2. If the Arduino powered? – Sure? If have a known good/ spare always a good idea to swap.
3. Is the device being recognized as a USB device? (Look at device manager plugging in and out)
4. Try another USB port – on some laptops the left-hand side USB ports are USB2 and the right are USB3 andthe driver is only installed for one or other.
5. If you have a Nano which needs the CH340 driver – is it installed? Google how to install the driver if needed– the original nano and the UNO use the FTDI chip whose driver is part of windows.
6. Regression is a powerful idea. If fails to compile go back to earlier version (even as far as back to “Blink” – ifthat does not work what has changed since it last did?)
7. Double check selected correct Arduino version, and correct COM port (generally highest one)
8. Hardware swap out. Try another PC, another cable, another Arduino. Ideally have a fully working parallelsystem and bit by bit morph one into the other.
9. If going on a forum for help, give as much details as possible: version of the IDE, version of the hardware,what operating system used, where the problem is (compiles / but does not load? / device not detected? /does not compile? / unexpected behaviour? etc.)

Appendix D Interesting links, fantastic ideas
1. 20 Awesome Arduino UNO Projects:https://www.seeedstudio.com/blog/2020/01/16/20-awesome-arduino-projects-that-you-must-try-2020/(I love the idea of auto plant watering system so much!)
2. OKdo Blog - a regularly-updated web for your Arduino project inspirations: https://www.okdo.com/okdo-blog/
3. Build your own Arduino from scratch using ATMega328P:https://www.instructables.com/Make-Your-Own-Arduino-ArduinoISP-Learn-to-Burn-Boo/

https://www.seeedstudio.com/blog/2020/01/16/20-awesome-arduino-projects-that-you-must-try-2020/
https://www.okdo.com/okdo-blog/
https://www.instructables.com/Make-Your-Own-Arduino-ArduinoISP-Learn-to-Burn-Boo/

	Introduction
	From Blink to Arduino Programming Syntax
	Arduino IDE
	Blink!
	Variables and Arithmetic Expressions
	Variable declaration
	Arithmetic expressions

	Control flow
	for loop
	if...else...statements
	while loop

	Functions

	Serial communication at a glance
	Serial.begin()
	Serial.print()
	Serial.println()
	Serial.read()
	Serial.write()

	Analog? Digital?
	Analog signals - analogRead and analogWrite
	Digital signals

	From sketches to actions - compilation
	Pointers
	(A warm-hearted) Checklist
	Interesting links, fantastic ideas

